Introduction to Graph Neural Network
(Node Classification: Cora Citation Dataset)

®
".' ~ ® Machine ® “

Learning

Vinh Dinh Nguyen
PhD in Computer Science

Al VIETNAM
All-in-One Course

e —
Objective
Introduction to Graph Data

Graph Data with Neural Network
Node Classification Problem: Cora Citation Dataset

Summary

Vinh Dinh Nguyen- PhD in Computer Science

Al VIETNAM
All-in-One Course

» Objective
» Introduction to Graph Data

» Graph Data with Neural Network
» Node Classification Problem: Cora Citation Dataset

» Summary

Vinh Dinh Nguyen- PhD in Computer Science

Al VIETNAM Obj ective

All-in-One Course

* What is Graph Data Around Us

e Understand Graph Neural Network

* Understand Graph Convolutional Neural Network

* Node Classification with Cora Citation Dataset

Vinh Dinh Nguyen- PhD in Computer Science

Al VIETNAM
All-in-One Course

]
“

» Objective
» Introduction to Graph Data

» Graph Data with Neural Network
» Node Classification Problem: Cora Citation Dataset

» Summary

Vinh Dinh Nguyen- PhD in Computer Science

AI VIETNAM Applic ations of GNNs

All-in-One Course

[oAl o

(a) Physics (b) Molecule

N

ovn e fox junped sme over mm the pme Loy pme dog pe

(d) Text

z:: T m
Generate |

e) Social Network f) Generation
6

Vinh Dinh Nguyen- PhD in Computer Science

Graph Definition

A graph represents the relations (edges) between a collection of entities (nodes).

~‘|IIIIIIIIIIIIIIIIIIIIIIIIIII"‘

o =~

~\|IIIIIIIIIIIIIIIIIIIIIIIIII'
“onnnnnERRRRRRRRRRRRRRRRRREN]

ANNRNNNNNNNNRNNNRNNNNRRRNEEDS

V Vertex (or node) attributes E Edge (or link) attributes and directions U Global (or master node) attributes

Vinh Dinh Nguyen- PhD in Computer Science

Graphs are everywhere

o

Link \ 7).
between users .

Link between
user and movie Via ro,‘tiv\ﬁ

Vinh Dinh Nguyen- PhD in Computer Science

Pixe|

Graph with
two classes 0 and 1

” -
Unlabelled <) £
- iT
N Eoach row contains
X = a node feature vector
Feature /
motrix
\

dimension of feature space

https://towardsdatascience.com/over-smoothing-issue-in-graph-neural-network-bddc8fbc2472

Graph Definition

To further describe each node, edge or the entire graph, we can store information in each of these pieces of the graph

‘|IIIIIIIIIIIIIIIIIIIIIIIIIII"

Vertex (or node) embedding

O

Edge (or link) attributes and embedding

Al O0—0 —

OF

Global (or master node) embedding

(RRRRRRRRRRRRRRRRRRRRIRRRRRE)Y
RN RN RRRNNRRRRRRRRRRRRRRREN

e I O N
.
‘ypmmuNENRRRNENRRNNRRRRNRNERREERS

4

Vinh Dinh Nguyen- PhD in Computer Science

Graphs and where to find them

Two types of data that you might not think could
be modeled as graphs:

N\l

- g
=
=

Graphs are all around us

Text

Social networks

Vinh Dinh Nguyen- PhD in Computer Science

Image as Graphs

Image Pixels Adjacency Matrix

Another way to think of images 1s as graphs with regular structure, where each pixel represents a node and is
connected via an edge to adjacent pixels. Each non-border pixel has exactly 8 neighbors, and the information
stored at each node is a 3-dimensional vector representing the RGB value of the pixel.

&I;EJ

Vinh Dinh Nguyen- PhD in Computer Science

Source: https://distill.pub/2021/gnn-intro/

Text as Graphs

@363 (1Y - around -(us

Graphs

w
.
around .

us

Graphs
. are

all

around

us

We can digitize text by associating indices to each character, word, or token, and representing text as a
sequence of these indices. This creates a simple directed graph, where each character or index is a node and is
connected via an edge to the node that follows it.

Vinh Dinh Nguyen- PhD in Computer Science

Other Graph Data

The caffeine molecule

ical name: 1, 3, 7-tri
chemical formula: CgH1gN4O2

© 00 N O o b O N = O

—_
o

-
N -

13 B Grap model

Adjacency matrix

Molecules as graphs

Vinh Dinh Nguyen- PhD in Computer Science

13

Other Graph Data

© TAN®
° 5 T8 &8 g - o
= QD : o - N
= £ EEEEZQ 8c?2§ oD = = =
s S o @ © 00 0 SO0 g s =2 S99
083 ScelS=ss==8 30208370653 ® ®
CQ$;8x=EEEE‘5ogwc'ﬁ.gwu,(—chC
SC SO PSS ECOOOSTDRLOSEECTO O O
N0 O0O Q0 AQAUOOCOCOOEI=Z2=Z2=200C 00N ®
Bianca]

Brabantio
Cassio
Clown
Desdemona
Duke

Emilia [
Gentleman
Gentleman.1
Gentleman.2
Gentleman.3
Gratiano
lago
Lodovico
Messenger
Montano
Musician.1
Officer
Othello
Roderigo
Sailor
Senator
Senator.1
Senator.2

(Left) Image of a scene from the play “Othello”. (Center) Adjacency matrix of the interaction between characters in the play. (Right) Graph representat-'gn of these intQactions.

Vinh Dinh Nguyen- PhD in Computer Science

Other Graph Data

Or—ANMILOWONCO

1
1
1
1
:
1
1

Mr. Hi
student 1
student 2
student 3
student 4
student 5
student 6
student 7
student 8
student 9
student 1
student
student
student
student
student
student
Bl student
student 1
Il student 19
student 20
Bl student 21
student 22
student 23
student 24
student 25
student 26
student 27
student 28
student 29
student 30
l student 31
student 32
John H.

Mr. Hi
student 1
student 2
student 3
student 4
student 5
student 6
student 7
student 8
student 9

student 10
student 11
student 12
student 13
student 14
student 15
student 16
student 17
student 18
student 19
student 20
student 21
student 22
student 23
student 24
student 25
student 26
student 27 = o
student 28

student 29]]
student 30]

student 31

a
R TR e ol Rl

(Left) Image of karate tournament. (Center) Adjacency matrix of the interaction between people in a karate club. (Right) Graph representation of these interactions.

&
L B
0O

ikl rn
-
I-

i
b

]
eBEgwEs
O
o O
OO
O

Vinh Dinh Nguyen- PhD in Computer Science

Other Graph Data

Edges per node (degree)

Dataset Domain graphs nodes edges min mean max

karate club Social 1 34 78 4.5 17
network

aqm9 Small 134k <9 <26 1 2 5
molecules

Cora Citation 1 23,166 91,500 1 7.8 379
network

Wikipedia links, Knowledge 1 12M 378M 62.24 ™

English graph

Summary statistics on graphs found in the real world. Numbers are dependent on
featurization decisions.

Vinh Dinh Nguyen- PhD in Computer Science

Tasks on Graph Data

Graph-level task Similar to image classification problems

o} 5 o
. °© o o o o o Q 0 o O
AR ./ © oooooo 5 oo ©
o & & o o—d O o 4 © o o 0 o O
o O—0) o 0—0
o
oo S 0
o o o o o %
(ORe) O
o o o)
O o O o O o @]

__

Input: graphs
Output: labels for each graph, (e.g., "does the graph contain two rings?")

In a graph-level task, our goal is to predict the property of an entire graph. For example, for a molecule
represented as a graph, we might want to predict what the molecule smells like, or whether it will bind to a
receptor implicated in a disease.

Vinh Dinh Nguyen- PhD in Computer Science

Tasks on Graph Data

Node-level task Similar to image segmentation problems

__

__

o) O g (@) a i
! o !
o) o o o o) | ! © ’ ? * :
]] | . . |
1 . I
AN | — <ot I :
o o o} o o O : e o
0 @) o o © h » y o} ® i
s 7 o O e o ¢
O o o 2 &)
o 2 = e
o o o

Input: graph with unlabled nodes
Output: graph node labels

Node-level tasks are concerned with predicting the identity or role of each node within a graph.

Vinh Dinh Nguyen- PhD in Computer Science

Tasks on Graph Data

Edge-level task

Similar to image scene understanding

Node-level tasks are concerned with predicting the
identity or role of each node within a graph.

S atching
\._watching

R ,
oo e F
= ;
P &
Input: fully connected graph, unlabeled edges Output: labels for edges

Vinh Dinh Nguyen- PhD in Computer Science

A Simple Graph

Personal Information

0
e
=

Node information Paper Content

EREEPEEN

@

Edge information Paper citation Relationship

Vinh Dinh Nguyen- PhD in Computer Science

Nodel level prediction

Does this student smoke?
(unlable node)

Vinh Dinh Nguyen- PhD in Computer Science

Example

Edge level predictions
(Link prediction)

Next Youtube
Video?

Graph Level
Predictions

Is this molecule a suitable
drug?

Al VIETNAM
All-in-One Course

]
“

» Objective
» Introduction to Graph Data

» Graph Data with Neural Network
» Node Classification Problem: Cora Citation Dataset

» Summary

Vinh Dinh Nguyen- PhD in Computer Science

22

Graph Data with Neural Network

G(V,E)

So, how do we go about solving these different graph tasks with neural networks?
The first step is to think about how we will represent graphs to be compatible with
neural networks.

Vinh Dinh Nguyen- PhD in Computer Science

Graph Data with Neural Network

h with
two classes 0 and 1

7

Unlabelled €= ==L) e
nodes : =

58 H

0 |

as H

11 -

HoH e

ssEe » i

)

x Feature matrix
Eoach row contains]

X = a node Feature vector _)

Fe,o.‘tul:‘e_ / - @) O dasso0

matrix O | 1
O class

\ o

dimension of feature space

soptmax lo.l/e{‘

The goal of GNN is to transform node features to features that are aware of the graph structure

Vinh Dinh Nguyen- PhD in Computer Science

Problem with Graph Data

Difference in Size and Shape Isomorphism

- - <

Permutaton invariant

An isomorphism

Graph H between G and H
_ fla)=1
2) fib) =6

e e e e e e —
U

fie)=8 | o - o e o« o~ o o ERE -

fld)=3 o W

fig)=5 ;.... O

fih)=2 3 . .

fliy=4 ! H_ N H

o -.;.

: e
\ Cannot use adjacency o)
| shape? / \ . . " L] o /
N matrix as an mput . _

__

Vinh Dinh Nguyen- PhD in Computer Science

Problem with Graph Data

Isomorphism Grid Structure

- e e e e e e e e e e e e e e -
- - o

- - o

Information between

: L

nodes
! Permutaton invariant Lo

| onwne S e

| e B

: o fic)=8 o - &8 m < 1w o~ oo 2 F 8 1 :

v S : fid) =3 0 .l. o | :

: flg)=5 - m : :

- =2 . . u b

: 0= L

: =7 - W -.::- o

\ . : e ¥ Vo Non-Euclidean
| Cannot use adjacency . 0 FE

y , , " L I R space
matrix as an mput - g ¥

Vinh Dinh Nguyen- PhD in Computer Science

. e e e e e - - - - - - - - - - ————

Fundamental Idea of GNNs

g
Learning a for neural network suitable representation of graph data

<Representation Learning>>

o

Node information Node information

7 Node Level
o 2 | | m ENCHENEY
e DY

K / Size 128
ENENENEN

Edge information

Size 64

Hyperparameters

Edge information
Vinh Dinh Nguyen- PhD in Computer Science Graph Knowledge

A
v

How do Graph Neural Network Work?

Message passing layer Node information

ENENFEE

Node information

ERENEER

\

) (,
\

Edge information
Edge information

Edge and Node R Node Level Embedding

Information 1.Sample Neighborhood 2. Aggregation 3. Update Information
Vinh Dinh Nguyen- PhD in Computer Science

()
\/"\

How do Graph Neural Network Work?

TARGET NODE

l

INPUT GRAPH

Neural networks

Vinh Dinh Nguyen- PhD in Computer Science

How do Graph Neural Network Work?

-t = === \
: Skip !
1 Connection
N ’
e ———— | -
_ _’: Sampling Conv/Recurrent Pooling
" Operator Operator Operator
\ N A S L
Input PR -
GNN |_, [GNN |_ - =
:") Layer Layer
. J (. J

1. Find graph structure.

Output

Node
Embedding

Edge
Embedding

Graph
Embedding

-

Loss Function

~

4. Build model using computational modules.

2. Specify graph type and scale.

Vinh Dinh Nguyen- PhD in Computer Science

Q

Training Setting

* Supervised
* Semi-supervised
* Unsupervised

Task
Node-level
Edge-level
Graph-level

)

3. Design loss function.

https://arxiv.org/pdf/1812.08434.pdf

Create a graph using NetworkX

'1mport networkx as nx :
'H = nx.DiGraph()

' #adding nodes
'H.add_nodes_from([|
(0, {"color": "purple", "size": 250}), i
. (1, {"color": "yellow", "size": 400}),
i (2, {"color": "orange", "size": 150}),
(3, {"color": "red", "size": 600})

i])

' #adding edges .
'H.add_edges_from([|
(e, 1), (1, 2), (1, @), (1, 3), (2, 3), (3,0) |
i |
inode_colors = nx.get_node_attributes(H, "color").values() |
' colors = list(node_colors) :
'node_sizes = nx.get_node_attributes(H, "size").values()
isizes = list(node_sizes)

#Plottlng Graph
nx draw(H, with_labels=True, node_color=colors, node_size= 51zes)

Vinh Dinh Nguyen- PhD in Computer Science

CNN Vs. GNN: Messsage Passing

TXIAIX
XIS

X
X

/
[\

S

2D Convolution. Analogous to a graph, each pixel in an
image 1s taken as a node where neighbors are
determined by the filter size. The 2D convolution takes
the weighted average of pixel values of the red node
along with its neighbors. The neighbors of a node are
ordered and have a fixed size

Vinh Dinh Nguyen- PhD in Computer Science

X

v

y

vy

Graph Convolution. To get a hidden representation of
the red node, one simple solution of the graph
convolutional operation is to take the average value of
the node features of the red node along with its
neighbors. Different from image data, the neighbors of
a node are unordered and variable in size

https://arxiv.org/pdf/1901.00596.pdf

Message Passing: Behind the Scene

The local feature aggreation <=> CNN Kernvel

HE =EEE.
5]

=) - |
<2 B -

O o
DEEs
DEE

HEER ENEN

DEnn DOOE O o
pEoe

Initial size: 64 features

DEEE

128 features

Structural and feature

- e e e e e e e e
- = - -
-

EEE-. . h(k) C«E-E - . h<'<> -

! hgk) w“ §k+1) # (k+1) (k) . h§k+2) i
; — " o omE - =
AGGREGATE . o UPDNE AGGREGATE . UPDATE | .

Vinh Dinh Nguyen- PhD in Computer Science

Graph: Example

S| Aggesation | ne |

‘1 x Aggregos‘tiov\

Compu’to:tional 3raph
of node | at lau/e_r 1

1
= |
Inpu‘t groph o o . . ; Final embedding for node i
mbeplolmg
! \ updated o Each node go through the same
Update _—% Wia 15 pramewa‘k
2 o' o5 Those new embedding become the new
15 features for the next layef
A= los

3

https://towardsdatascience.com/over-smoothing-issue-in-graph-neural-network-bddc8fbc2472 /i Upolo:te,
Vinh Dinh Nguye) ®

Computation Graph Representation

Aggregate

’
[

Aggregate |

N

nEas

Computationnal Graph
for Node v

nEas

Update
EEEE

.
< >

Initial size: 64
features

The number of layers
defined by how many
neighborhood nodes

The number of MP-Layer
1s a hyper parameters

Vinh Dinh Nguyen- PhD in Computer Science

Al VIETNAM
All-in-One Course

Vinh Dinh Nguyen- PhD in Computer Science

Graph: Example

node i e_mbe,o(ohng

xX

0 t“0,1

0,2

36

Over-smoothing in GNN

Node 4 Node 3

Compu‘Co«‘b?onoJ grophs

Input h
neut grae at laye,r‘ 1

EJ Node 2 and node 3 have almost access to the same information -> We can predict that their embeddings will be slightly similar.

Node 1 and Node 4, they interact with each other but have different neighbors -> We may predict that their new embeddings will be different.
Vinh Dinh Nguyen- PhD in Computer Science

Over-smoothing in GNN

Almost the same
compu‘tational groph

Node 4 Node 3

PROBLEM
D
<
©

v

Updated groaph &/ Node 3

T-hop 11‘\29
COMPu'ta‘tional graphs

EJ at lou./e,r 2
& The computational graphs of nodes 1,4, and 2,3 are almost the same respectively

Vinh Dinh Nguyen- PhD in Computer Science

Over-smoothing in GNN

Interested
n machine le_o\rm:ng

Interested
n pol‘rtics

Graph Neural Networks, or GNNs, are really good at working
with data that 1s organized in a graph structure. But sometimes,
when we add more layers to a GNN architecture, it doesn’t
work as well as we would like. This is called over-smoothing.

Interested
n S“PP"/ chain

Interested
in statistics

Vinh Dinh Nguyen- PhD in Computer Science

Why over-smoothing happens?

7

H label

1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label

from neighbors using aggregated information

ii l"_" Reason 1 — More number of layers (depth)

Reason 2 — Default nature of GNNs

Vinh Dinh Nguyen- PhD in Computer Science

How to detect over-smoothing?

Metric 1: MAD(Mean Average Distance)

0.629 | 0.860 | 0.608

ARMA

ChebGCN

DNA

FeaSt

GAT

Model

GCN

GGNN
GraphSAGE
HighOrder

HyperGraph

YAV GE 0.138 0.024

T oss2 s o
0.778 | 0.770 | 0.677 oAk

vz vz 0.232 0.047

0.078 0.021 0.033

0.925 | 0.816 | 0.632

INo7icl 0.145 0.023 0.004

0.828 | 0.742 | 0.493 MUK
2 3 4 5

#Model Layer

Vinh Dinh Nguyen- PhD in Computer Science

0.004
0.018
0.096
0.072
0.005

0.796 | 0.765 | 0.714 | 0.602 ML)

0.661

0.039
0.053
0.012
0.023

6

0.8

0.6

0.4

-0.2

-0.0

&E

MAD computes the Mean Average Distance (MAD) between
node representations (embeddings) in the graph

Dij=1

H,. Hj

~ |H,,|-|H;

:l i,jE[1,2,"°,’n],

X,

Cosine Distance/Similarity

Item 2

Item 1

4]
b3
Cosine Distance

similarity = cos(f) = »

Xy

n
A; B
aB &

“VAIBI - = =
[AllB] [e ,ZB?
=1 i=1

Measuring and Relieving the Over-smoothing Problem for Graph Neural
Networks from the Topological View

Deli Chen,' Yankai Lin,”> Wei Li,' Peng Li,> Jie Zhou,’> Xu Sun'
'MOE Key Lab of Computational Linguistics, School of EECS, Peking University
2Pattern Recognition Center, WeChat Al, Tencent Inc., China
{chendeli,liweitj47,xusun } @pku.edu.cn, {yankailin,patrickpli,withtomzhou } @tencent.com,

How to detect over-smoothing?

Metric 2 : MADGap

MADGap = MAD™¢ — MAD?"¢P, (5)

where MAD™" is the MAD value of the remote nodes in It is based on the main hypothesis that when nodes interact,

the graph topology and MAD™®? is the MAD value of the L [iy i ot o d

neighbouring nodes. ey have access to el. er important information from nodes
of the same class or noise from nodes of other classes.

E

Measuring and Relieving the Over-smoothing Problem for Graph Neural
Networks from the Topological View

Deli Chen,! Yankai Lin,> Wei Li,! Peng Li,” Jie Zhou,”> Xu Sun'
'MOE Key Lab of Computational Linguistics, School of EECS, Peking University
2Pattern Recognition Center, WeChat Al, Tencent Inc., China
{chendeli,liweitj47,xusun} @pku.edu.cn, {yankailin,patrickpli,withtomzhou } @tencent.com,

Vinh Dinh Nguyen- PhD in Computer Science

Over-smoothing in GNN

Interested
n machine le_m?ng

Interested
n Pol?tics

How to reduce the effect of over-smoothing.

We encounter a trade-off between a low-
efficiency model and a model with more depth
but less expressivity in terms of node
representations

Interested
in statistics

Interested
n supply chain

. New user

=
& Imagine that we're dealing with a social network graph with thousands of nodes. Some new users just signed in to the
platform and subscribed to their friend's profiles. Our goal is to find topic suggestions to fill their feed.

Vinh Dinh Nguyen- PhD in Computer Science

Over-smoothing in GNN

Solution — Inserting nonlinear feedforward neural network layer(s) within each GNN layer.

p”
/ \ c <« «—M<----B

_--
\ / -
A<—<---_c A<—<—A<—<----c
D

\

Input graph GNN layer NGNN layer

https://www.dgl.ai/blog/2022/11/28/ngnn.html

Vinh Dinh Nguyen- PhD in Computer Science

AI VIETNAM Over_sm()()thing in GNN

All-in-One Course

Solution — Inserting nonlinear feedforward neural network layer(s) within each GNN layer.

‘Before

GNN layer

https://www.dgl.ai/blog/2022/11/28/ngnn.html

Vinh Dinh Nguyen- PhD in Computer Science

GNN layer with MLP

MLP

Conv—>RELU—FC

————> NodeC

45

Over-smoothing in GNN

Solution — Inserting nonlinear feedforward neural network layer(s) within each GNN layer.

Dataset Metric Model Performance

ogbn-proteins ROC-AUC(%) GraphSage+Cluster Sampling Vanilla 67.45 + 1.21
+NGNN 68.12 + 0.96

ogbn-products Accuracy (%) GraphSage Vanilla 78.27 + 0.45
+NGNN 79.88 + 0.34

GAT+Neighbor Sampling Vanilla 79.23 + 0.16
+NGNN 79.67 £ 0.09

ogbl-collab hit@50(%) GCN Vanilla 4952 + 0.70
+NGNN 53.48 £ 0.40

GraphSage Vanilla 51.66 + 0.35
+NGNN 53.59 + 0.56

ogbl-ppa hit@100(%) SEAL-DGCNN Vanilla 48.80 + 3.16
+NGNN 59.71+2.45

GCN Vanilla 18.67 +1.32
+NGNN 36.83 +0.99

https://www.dgl.ai/blog/2022/11/28/ngnn.html

Vinh Dinh Nguyen- PhD in Computer Science

Message Passing: Math is Fun

Mean Mean
Max Max

xI | x2 | x3

. Neural Network Normalization Sum
Recurrent Neural Network Neural Network

1

hk+1 = UPDATE®) (h’<+1 AGGREGATE®) ({hV} Vv € N(u)))

|
o [IIII dﬂl

.
.

- =

| o I
HEEE pEEs s ----
i B0 ¥ ik |
" e NG
AGGREGATE i A

\ /’
\\ ______________________________________ 4 \\ _______________ ,/ 47
Vinh Dinh Nguyen- PhD in Computer Science

Message Passing: Variants

x| B
AGGREGATE EXER UPDATE B
p@rm itation invaria nt) unn
] Self-loop
Grapr.\ Convolutlo.nal Networks, h®) — o | W Z h, Sum of normalized
Kipf and Welling [2016]

neighbor embeddings

vEN (u)U{u} \/IN ||N(l‘)

Aggregated message

Multi-Layer-Perceptron as ‘ - |
m MLPy MLP,(h, nd states th h a MLP
Aggregator, Zaheer et al. [2017] N (u) e ez\;(| o(v) Send states through a
(Ol o= B Y s

Graph Attention Networks, M) = Z oy . exp (a'[Wh, & Wh,])
Velickovic et al. [2017] R o .t Zv’eN(u) exp (a’ [Wh,, S Wh‘,/])
Gated Graph Neural Networks, h®) — GRU(h*—1) (k)
— ,m
Li et al. [2015] o (hg, N(u)) Recurrent update of the state

Vinh Dinh Nguyen- PhD in Computer Science

Message Passing: Variants

ettty | T oooTTTo S Uttt
! - i I Different variants of recurrent operators. |
| Spectral 1 !
' S, . ey ChebNet GCN ‘ ‘ AGCN ! . 1
! | Spectral po---------oo- : ! ! Variant Aggregator Updater |
1 \ 1
: ROCN OV i | GGNN Wy, = DHTEb g = oW, U :
A
| - (rommeme- . ! ! © r, = o(Whi,, + Uh{?) |
1 Convolution ! r I = . v !
: {__operstor (mm==-=nnn, || Neural FPs pony | PATANS L gov B, = tanh(Wh',, +U(r,oh) !
: i B | | b =(1-2z)0h!+z0ht |
\ 1
; GraphSAGE i I - - - -) |
: A ! ! Tree LSTM hi. = 3 Uh{? i, = o(Wx{ +h%, +b) |
S el B bbb e i ! (Child sum) ket of |
! | Attentional r--4 GAT GAAN | ! ! b = Ut 5 = o(Wxt + 1. + 1) !
: ---------- e | 1 -n:vk k . os = a(w"x; + h.n:-v + bo) :
, Propagation | e : : : h.!“, = Z Uahk ¢ = tanh(Wixt, + h%. + bY) |
! Module | Framework r--- MoNet MPNN NLNN ‘ ‘ GN i ! ket W . X+, |
R e S s : : Wy, = 3 U 6 =Lou+ ¥ fodq! !
! | 1 €Ny €Ny
- e jececccaa== 1 !
! e . | Convergence r--- GNN GraphSEN SSE ‘ | LP-GNN | ! ~am) h; = o} © tanh(c}) !
H i Recurrent ' ____________J) TTTTTTTToC ! H Tree LSTM (N-ary’ " K e 1
| ! Operator 1) \ | h’ T > Uhy; !
1 femmmeee-- 4 pm==mm——een I | =1 !
! | Gae r--- GGNN TreeLSTM Graph LSTM ‘ ’ SE';‘;R? | ! s » !
---------- L i 1 t—1
! i ! b =3 Uyhly |
T N . . 1 =1 !
! sk i High ‘ | ' |
1 L ighway ' K i
| i Comeeten T = con' | |G [peoeNT | Y, = S upm? |
: , » ! : Ko :
T T T 1 wu Upt—
! | Node r-- GraphSAGE VR-GCN PinSAGE : ! by, =2 Uih, i
[p—— 1 . " . . !
: PR [. | : Graph LSTM in h. = Z. U;"(v J‘)1.;(—1 !
| Module ! layer r-- FastGCN LADIES | H (Peng et al., 2017) p ket !
T | mmmmmmmms - -1
: el | i b = U{n(vk)h;t !
! [|__Subgraph Ilr' -- ClusterGCN GraphSAINT | i hf. = kz: U";,(v *)hi_l !
1 €Ny
1 | 1 !
1 H 1 hm‘ — Z Uu ht—l 1
o : : H I Ay K7 mivk) Tk !
! | Divect | b--- 0 Simple Set2set SortPooling ! | :
H il ’ Pooling ! h 1
' LT ‘
! Module 1
| fmmmm————— , Coarsening ECC ’ DiffPool gPool '
1 Hierarchical 1
o e : Graph neural networks: A review of methods and applications
1 EigenPooling SAGPool

T e Jie Zhou™"', Ganqu Cui®’, Shengding Hu?, Zhengyan Zhang®, Cheng Yangb, Zhiyuan Liu®",
Lifeng Wang , Changcheng Li “, Maosong Sun?

® Department of Computer Science and Technology, Tsinghua University, Beijing, China
b School of Computer Science, Beijing University of Posts and Telecommunications, China
© Tencent Incorporation, Shenzhen, China

Vinh Dinh Nguyen- PhD in Computer Science

Al VIETNAM
All-in-One Course

]
“

» Objective
» Introduction to Graph Data

» Graph Data with Neural Network
» Node Classification Problem: Cora Citation Dataset

» Summary

Vinh Dinh Nguyen- PhD in Computer Science

51

Al VIETNAM
All-in-One Course

Vinh Dinh Nguyen- PhD in Computer Science

Node Classification Problem

pod o
. Machine

Learning

52

GNN: Node Classification

— Knowledge Graphs and Node Classification

We have one large graph and not many individual graphs (like molecules)
We infere on unlabeled nodes in this large graph and hence perform node-level predictions
--> We have to use different nodes of the graph depending on what we want to do

Dataset Introduction: Cora Citation Dataset in PyTorch Geometric

The Cora dataset consists of 2708 scientific publications classified into one of seven classes.

Each publication in the dataset is described by a 0/1-valued word vector indicating the
absence/presence of the corresponding word from the dictionary.

* The dictionary consists of 1433 unique words.

* Nodes = Publications (Papers, Books ...)

* Edges = Citations Node Features = word vectors

e 7 Labels = Pubilcation

* type e.g. Neural Networks, Rule Learning, Reinforcement Learning, Probabilistic Methods...

Vinh Dinh Nguyen- PhD in Computer Science

avenen - BoW Representation

All-in-One Course

. Dictionary
- \
- gy LI T T T
=y
2 7 1 0

R — 3

T e e e

0.03 0.00

Vinh Dinh Nguyen- PhD in Computer Science

Cora Citation Dataset

1433 words

1433 words Neural Networks

1433 words

_ Reinforcement Learning
Cited

Genetic Algorithms

1433 words

-

e

1433 words

1433 words

Vinh Dinh Nguyen- PhD in Computer Science /

Cora Citation Dataset

Neural Networks

Reinforcement Learning

Genetic Algorithms

Vinh Dinh Nguyen- PhD in Computer Science /

Al VIETNAM
All-in-One Course

Visualize the node embeddings of the untrained
GCN network

‘model = GCN(hidden_channels=16)
' model.eval()

Eout = model(data.x, data.edge_index)i
'visualize(out, color=data.y) '

Vinh Dinh Nguyen- PhD in Computer Science

57

&l;zl

GNN: Node Classification

Install Pytorch Geometric

Check CUDA Version
Ipython -c "import torch; print(torch.version.cuda)"

Add this in a Google Colab cell to install the correct version of Pytorch Geometric.
import torch

def format_pytorch_version(version):
return version.split('+"')[0]

TORCH_version = torch.__version__
TORCH = format_pytorch_version(TORCH_version)

def format_cuda_version(version):
return 'cu' + version.replace('.', '')

CUDA_version = torch.version.cuda
CUDA = format_cuda_version(CUDA_version)

Ipip
Ipip
Ipip
Ipip
Ipip

Vinh Dinh Nguyen- PhD in Computer Science

install torch-scatter
install torch-sparse
install torch-cluster
install torch-spline-conv
install torch—geometric

-f https://pytorch—-geometric.

com/whl/torch-{TORCH}+{CUDA}.html

-f https://pytorch—-geometric.

com/whl/torch-{TORCH}+{CUDA}.html

-f https://pytorch—-geometric.

com/whl/torch-{TORCH}+{CUDA}.html

-f https://pytorch—-geometric

.com/whl/torch-{TORCH}+{CUDA}.htm1l

GNN: Node Classification

— from torch_geometric.datasets import Planetoid

D Load Cora Dataset from torch_geometric.transforms import NormalizeFeatures
dataset = Planetoid(root='data/Planetoid', name='Cora', transform=NormalizeFeatures())
Get some basic info about the dataset
print (f'Number of graphs: {len(dataset)}')
print(f'Number of features: {dataset.num_features}')
print(f'Number of classes: {dataset.num_classes}')
print(50%'=")

There is only one graph in the dataset, use it as new data object
data = dataset[0]

([x| | # Gather some statistics about the graph.
- print(data)
ol print(f'Number of nodes: {data.num_nodes}')
e print(f'Number of edges: {data.num_edges}')
print(f'Number of training nodes: {data.train_mask.sum()}")
print(f'Training node label rate: {int(data.train_mask.sum()) / data.num_nodes:.2f}')
(a [| |- | LR 0 e o print(f'Is undirected: {data.is_undirected()}")
EIEIEN

Number of graphs: 1
Number of features: 1433
Number of classes: 7

O - JOMN - N -

Data(x=[2708, 1433], edge_index=[2, 10556], y=[2708], Erain_mask=[2708], val_mask=[2708]} test_mask=[2708])
Number of nodes: 2708

Number of edges: 10556

Number of training nodes: 140

Training node label rate: 0.05

Is undirected: True

Mask

Vinh Dinh Nguyen- PhD in Computer Science

GNN: Node Classification MLP

import torch
from torch.nn import Linear
import torch.nn.functional as F

Define MLP class MLP(torch.nn.Module):
def __init__(self, hidden_channels):
super().__init__()
torch.manual_seed(12345)

self.linl = Linear(dataset.num_features, hidden_channels)
Fkﬂe, e e cedng e JARecliEnsteng] et self.lin2 = Linear(hidden_channels, dataset.num_classes)
vector to a low-dimensional embedding def forward(self, x):
(hidden_channels=16), while the second linear layer x = self.linl(x)
acts as a classifier that should map each low- X3S Xanetut) . .

) }) x = F.dropout(x, p=0.5, training=self.training)

dimensional node embedding to one of the 7 classes. x = self.lin2(x)

return x

model = MLP(hidden_channels=16)
print(model)

test_acc = test()
print(f'Test Accuracy: {test_acc:.4f}"')

Test Accuracy: 0.5900

Vinh Dinh Nguyen- PhD in Computer Science

GNN: Node Classification MLP

Fk)m/to'Train) from IPython.display import Javascript # Restrict height of output cell.
display(Javascript('''google.colab.output.setIframeHeight(@, true, {maxHeight: 300})'''))

model = MLP(hidden_channels=16)
criterion = torch.nn.CrossEntropyLoss() # Define loss criterion.
optimizer = torch.optim.Adam(model.parameters(), 1r=0.01, weight_decay=5e-4) # Define optimizer.

Here, we first reduce the 1433-dimensional def train():
. ; - model.train()
feature vector to a low-dimensional embedding optimizer.zero_grad() # Clear gradients.

(hidden_channe|s:16), while the second linear out = model(data.x) # Perform a single forward pass.

| e h Salle h loss = criterion(out[data.train_mask], data.yl[data.train_mask]) # Compute the loss solely based on the
ayer acts as a classirier that shou map €ac loss.backward() # Derive gradients.

low-dimensional node embedding to one of the 7 optimizer.step() # Update parameters based on gradients.

return loss
classes.

def test():

model.eval()

out = model(data.x)

pred = out.argmax(dim=1) # Use the class with highest probability.

test_correct = pred[data.test_mask] == data.y[data.test_mask] # Check against ground-truth labels.
test_acc = test() test_acc = int(test_correct.sum()) / int(data.test_mask.sum()) # Derive ratio of correct predictions.
print(f'Test Accuracy: {test_acc:.4f}") return test_acc

Test Accuracy: 0.5900

Vinh Dinh Nguyen- PhD in Computer Science

GNN: Node Classification GCN

class GCN(torch.nn.Module):
def __init__ (self, hidden_channels):
super().__init__ ()
Define GCN torch.manual_seed(1234567)
self.convl = GCNConv(dataset.num_features, hidden_channels)
self.conv2 = GCNConv(hidden_channels, dataset.num_classes)

def forward(self, x, edge_index):

x = self.convl(x, edge_index)

x = x.relu()

x = F.dropout(x, p=0.5, training=self.training)

x = self.conv2(x, edge_index)

return Xx GO

(convl): GCNConv(1433, 16)

model = GCN(hidden_channels=16) (conv2): GCNConv(16, 7)
print(model) :

we will use on of the most simple GNN operators, the GCN layer (Kipf et al. (2017)), which is defined as

1
XD WD Z x
weN () U {v) Cw,

Vinh Dinh Nguyen- PhD in Computer Science

GNN: Node Classification GCN

class GCN(torch.nn.Module):
def __init__ (self, hidden_channels):
super(GCN, self).__init_ ()
torch.manual_seed(42)

' # Initialize the layers
Deﬁne GCN self.convl = GCNConv(dataset.num_features, hidden_channels)
self.conv2 = GCNConv(hidden_channels, hidden_channels)
self.out = Linear(hidden_channels, dataset.num_classes)

def forward(self, x, edge_index):
First Message Passing Layer (Transformation)

Dropout is only applied in the training step, but not for A N
predictions x = x.relu()
. , x = F.dropout(x, p=0.5, training=self.training)
We have 2 Message Passing Layers and one Linear
Second Message Passing Layer
OLITpU layer . N x = self.conv2(x, edge_index)
We use the softmax function for the classification x = x.relu()
problem x = F.dropout(x, p=0.5, training=self.training)
The output of the model are 7 probabilities, one for # Output layer _
ol e X z F.softmax(self.out(x), dim=1)
return X

we will use on of the most simple GNN operators, the GCN layer (Kipf et al. (2017)), which is defined as

1
XD = WD Z x
weN () U {v}) Cw,

Vinh Dinh Nguyen- PhD in Computer Science

GNN: Node Classification GCN

from IPython.display import Javascript # Restrict height of output cell.
display(Javascript('''google.colab.output.setIframeHeight(@, true, {maxHeight: 300})'''))

model = GCN(hidden_channels=16)
optimizer = torch.optim.Adam(model.parameters(), 1r=0.01, weight_decay=5e-4) i
criterion = torch.nn.CrossEntropyLoss() ;

def train():
model.train()
optimizer.zero_grad() # Clear gradients.
out = model(data.x, data.edge_index) # Perform a single forward pass.

loss = criterion(out[data.train_mask], data.yl[data.train_mask]) # Compute the loss solely based on th¢
loss.backward() # Derive gradients.

optimizer.step() # Update parameters based on gradients.
return loss

© test_acc = test()
print(f'Test Accuracy: {test_acc:.4f}')

Test Accuracy: 0.8150

def test():

model.eval()

out = model(data.x, data.edge_index)

pred = out.argmax(dim=1) # Use the class with highest probability.

test_correct = pred[data.test_mask] == data.yl[data.test_mask] # Check against ground-truth labels.
test_acc = int(test_correct.sum()) / int(data.test_mask.sum()) # Derive ratio of correct predictions.
return test_acc

for epoch in range(1, 101):
loss = train()
print/(f'Epoch: {epoch:03d}, Loss: {loss:.4f}')|

Vinh Dinh Nguyen- PhD in Computer Science

AI VIETNAM Summary

All-in-One Course

What is Graph Data Around Us

Understand Graph Neural Network

Understand Graph Convolutional Neural Network

Node Classification with Cora Citation Dataset

65
Vinh Dinh Nguyen- PhD in Computer Science

Al VIETNAM
All-in-One Course

Advanced Graph Neural Network
(GCN, Graph Relational, Attention & Level-Prediction)

SALT-WATER

>

Edge information

Binary information

@ Love to watch movie

| ~ = D 0 Not Love to watch movie _
SOLUTE + SOLVENT — SOLUTION Node feature Does she love watching
Age Weight Drink Age Weight Drink movie?

el Vinh Dinh Nguyen
PhD in Computer Science

Objective

E‘ oo Weight Dk Node feature Edge information
Why are edge

features important - A Node feature By fornaon
0-1

Age Weight Drink

Love to watch movie
Not Love to watch movie
Age Weight Drink
Node feature Node feature Does she love watching
Age Weight Drink Age Weight Drink movie?

Node feature

Vinh Dinh Nguyen- PhD in Computer Science

How to integrate edge feature to GNN

Edge Weight in GNN

Relational GNN

Multidimensional Edge Feature

Attention in GNN

J

~

* Graph-level prediction: Example and Code

Al VIETNAM
All-in-One Course

Edge Feature in GNN

Edge Weight in GNN

Relational GNN

Multidimension Edge Feature
Attention in GNN

Example: Graph-Level Prediction
Summary

>
>
>
>
>
>
>

en- PhD in Computer Science

Al VIETNAM
All-in-One Course

]
“

Edge Feature in GNN

Edge Weight in GNN

Relational GNN

Multidimension Edge Feature
Attention in GNN

Example: Graph-Level Prediction
Summary

>
>
>
>
>
>
>

en- PhD in Computer Science

Edge Feature in GNN: Last But Not Least

Age Weight Drink

| 5' Node feature Edge information
Why are edge
features important Node feature Binary information

Age Weight Drink 0-1

Love to watch movie

Not Love to watch movie

Age Weight Drink

Node feature Node feature Does she love watching

ie?
Age Weight Drink Age Weight Drink MOVIE:

Vinh Dinh Nguyen- PhD in Computer Science Node feature

Edge Feature in GNN: Last But Not Least

Age Weight Drink

= Node feature - -
[/j Why are edge Edge information
features Node feature Friend Friend Since Live together

important Age Weight Drink Yes 9 No

How,do edge features
utilize in GNN?

Love to watch movie

Not Love to watch movie

Node feature Node feature

Age Weight Drink Age Weight Drink

Vinh Dinh Nguyen- PhD in Computer Science Node feature

Edge Feature in GNN

Age Weight Drink

Node feature Edge information
N ode featu re Friend Friend Since Live together
Age Weight Drink Yes . No Adjacency Matrix

How do edge features
utilize in GNN?

Love to watch movie

Not Love to watch movie

Age Weight Drink

Node feature Node feature

Age Weight Drink Age Weight Drink

B How to use Edge Feature:
Hot Research Topic

Vinh Dinh Nguyen- PhD in Computer Science

Node Embedding for Vinh Nguyen

hee el Node feature Edge information

Node feature e Where is the edge information used in this process?

Age Weight Drink Yes 9 _ No

How do edge features

utilize in GNN?
Love to watch movie
hk+1 = ypDATE® (h{i“,AGGREGATE(k) ({h{;}, Vv € N(u)))
Not Love to watch movie
e — hE+! = AGGREGATE® ({hl}, vv € N(u))
Maching
Learning
Transform Update Algorithm
Age Weight Drink / AGGERATE\ \ I
) 10 20 0
= — suM + o oo

Normalization Embedding Values

Age Weight Drink

30 60 1

o J

Vinh Dinh Nguyen- PhD in Computer Science

Node Embedding for Vinh Nguyen

Where is the edge information used in this process?

Adjacency Matrix

@

0 1 1 0 0

B I O . h&l = UPDATE® (KX, AGGREGATF =7, TRANSFORM (h)) |
o e e s YisamgTRANSFORM)))
©

Binary approach: use directly when we select the node

A

1 0 0 0 1 1

L i = AGGREGATE, ey (yin) TRANSFORM (1)!
0 0 1 0 0
Maching
/ Learning
¢ Transform Update Algorithm
Age Weight Drink / \ ’ / AGGE RATE\ /

11

10 20 0

=

| — SUM + -+ »

Normalization

Embedding Values

Age Weight Drink

30 60 1 \

Vinh Dinh Nguyen- PhD in Computer Science N\

p

Example

all connected nodes, resulting a sum of just the

The ‘0’ of the adjacency matrix cancel the contribution of
connected nodes.

SpoN © o

VOapoN © ©

CIPON © —

9 PON — ©

LopoN © —

Vinh Dinh Nguyen- PhD in Computer Science

Al VIETNAM
All-in-One Course

]
“

Edge Feature in GNN

Edge Weight in GNN

Relational GNN

Multidimension Edge Feature
Attention in GNN

Example: Graph-Level Prediction
Summary

>
>
>
>
>
>
>

en- PhD in Computer Science

Edge Weight: Common Approach

Age Welght __Drink Node feature Edge information
5@ @
Node feature Friend Friend Since Live together @
Age Weight Drink Yes e L0 0 1 1 0 0
\Y
How do edge features @ 1 0 0 1 0
utilize in GNN? ‘@
&) 1 0 ()} 0 1
, @ ()} 1 0 0 0
Love to watch movie
e 0 0 1 0 ()}

Adjacency Matrix: Describe the node connection

®e®0 0

@ 0.9 0 0 07 0
‘?’ 0.5 0 0 0 0.6
~ N

Adjacency matrix: A = A+ Iy @ o o7 | o | o | o

Not Love to watch movie

Age Weight Drink

Node feature Node feature

Age Weight Drink Age Weight Drink

Activation Function

0 0 0.6 0 0

R layer-specific
= A ——a(D 2 2H(l)W@7 .
: ~ trainable Weighted Matrix: Describe the

A
o ~ weight matrix "hapoy” information
Normalization Dj;; = Zj Aij Node feature PPy

Vinh Dinh Nguyen- PhD in Computer Science

GNN: Review

You know, who you choose to be around you, let'’s you know who you are.

The Fast and the Furious: Tokyo Drift.

URIOUS |

(L

~MIT PS-POWER, TESTOSTERON,
VOLLEM RISIKO UND

SPEKTAKULAREN CRASHS"
v Mo

Vinh Dinh Nguyen- PhD in Computer Science

GNN: Review

A graph

In social networks, friend connections can be realized by a social graph.

Vinh Dinh Nguyen- PhD in Computer Science

GNN: Review

HMM
Y Y, Y3 Y4 Y5 Yo
X1 A2 X3 X4 X5 X6

In speech recognition, the phoneme Y; and the acoustic model x; form an HMM (a graph for
speech recognition).

P

Vinh Dinh Nguyen- PhD in Computer Science

GNN: Review

Pixel,, with rgb features

5 x 5 pixels

P

3 x 3 filter

Even on CNN, an input image can be modeled as a graph. For example, the graph for a 5
5 image. Each node represents a pixel and for the case of a 3 x 3 filter, every node is
connected to its eight immediate neighbors.

Vinh Dinh Nguyen- PhD in Computer Science

GNN: Review

:

©0
00

0

3 x 3 Filter
In particular, when the relationships But this is not the case for a graph.
between neighboring nodes are For example, the graphs above are
irregular and high dimensional, we the same even though it looks
need to define them explicitly in order different spatially.

to solve them efficiently. In CNN, we
work 1n a Euclidean space. How
weights are associated with the input
features (pixels) 1s well defined.

Vinh Dinh Nguyen- PhD in Computer Science

GNN: Review

__

MQMQM s
W“W“‘ez O-O~O-0)!
oo 7 e
A N

v W
z=0Wx z=0(Wz) Wz)

networks (NNs) takes an

g In general, neural This leads us to the challenge of how a NN can process a graph directly.
input x to predict z.

Vinh Dinh Nguyen- PhD in Computer Science

GNN: Review

ANEEAN

M@w

z=1(x) f(9)

NN GCN

In GCN (Graph Convolutional Network), the input to the NN will be a graph. Also, instead of inferring a single z,
it infers the value z; for each node i in the graph. And to make predictions for Z;, GCN utilizes both X; and its
neighboring nodes in the calculation.

Vinh Dinh Nguyen- PhD in Computer Science

GNN: Review

Graph Convolutional Networks (GCN)

e

The general idea of GCN is to apply convolution over a graph. Instead of having a 2-D array as input,
GCN takes a graph as an input.

7
X

J<— J o~
.

\/T
.
>,

N2l
"\

-
JJJJ

>\
X

Vinh Dinh Nguyen- PhD in Computer Science

GNN: Review

ois an activation function, like ReLU

Graph Convolutional Networks (GCN)

& Anode NN with 3 hidden layers

That comes to the output of the hidden layer to ° ‘
be o(AH'W"). If we ignore W for a second, for each
node in a hidden layer, AH! sums up features on @ o) () e ()
each node with its neighbors.) O GCN with 3 hidden layers
A graph o 1 2 3 Node 0 and 3 are connected
1 0 1 1 0 1 /
Diminishing or exploding problem in a NN A |t oo]
> 0o o 1 1 Mathematically, A equals A +1
1 31 11

\ All diagonal elements are 1

In specific, GCN wants A to be normalized (Al nodes e st commected
to maintain the scale of the output feature

vectors A
Y One possibility is to multiple A with 0" ' where Ois the diagonal node degree

matrix of A in measuring the degree of each node

Vinh Dinh Nguyen- PhD in Computer Science

GNN: Review

o 1 2 3 o 1 2 3 /\ AR
0 1 1 0 1 0 4 0 0 0 6 0
" 1 1 0 1 o
A 1 b 11 0 4 o0 o0
2| 0 0o 1 1 21 0 0 3 0 L
| >
sl 1 1 1 1 3l o0 0o o 5 (2 (o)

g(,—_:J For an undirected graph, the degree of a node is counted as the number of times an edge terminates at that node. So
a self-loop will count twice. In our example, node O has 2 edges connecting to its neighbors plus a self-loop. Its degree
equals 4 (i.e. 2 + 2). For node 3, its degree equals 5 (3 + 2).

Vinh Dinh Nguyen- PhD in C 3 0 0 0 1/5

GNN: Review

Graph Convolutional Networks (GCN)

Ej
‘ H' = o (AXW)) O H? = o (AH'W?) G Hs = o (AH2W2) @ &

,) The diagram summarizes the model discussed
GCN with 3 hidden layers so far. In this example, it has 3 hidden layers

and for each hidden layer, it computes its
output as o(D™'AHWY. The equation used to
compute a hidden layer output from the last
layer output is called the propagation rule.

‘ H' = o (D" AXWY O He = o (DVAH'W C He = o (D1 AH2W?) @ ____________________________
H(l+1) =f(H(l),A)
GCN

) — O-(D_%AD_%H(I)W(I))

o (D'AH'WY)

>

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
I where I
1 1
1 1
1 1
1 1
1 1
. . 1
a Iayer-W|se propagatlon rule : :
1
1 1
1 1

Vinh Dinh Nguyen- PhD in Computer Science

From CNN to GNN

Convolutional Operation

ROI
Kernel
48 | 109 57 0.12 0.58 1.17
17 | 52 | 126 —-044 3.11 -0.8
131 13 | 64 511 -0.31 4.17

\

| 0.12x48 + 0.58x109 + 1.17X57 -0.44x17 + 3.11x52 -0.8x126 +
| 5.11x13 -0.31x13 +4.17x64 = 635.5 ’

Vinh Dinh Nguyen- PhD in Computer Science

635.5

From CNN to GNN

Kernel
l 0.12 0.58 1.17

-044 311 -0.3
511 -0.31 4.17

__

Vinh Dinh Nguyen- PhD in Computer Science

From CNN to GNN

Kernel
l 0.12 0.58 1.17

-044 311 -0.3
511 -0.31 4.17

__

' : 0.12x48 + 0.58X109 + 1.17X57 -0.44X17 -
| 0.8x126 + 5.11x13 -031x13 + 4.17x64 =

__

" 0.12x48 + 0.58x109 + 1.17x57 -0.44x17 + |
3.11x52 -0.8x126 + 5.11x13 -031x13 + |
| 4.17x64 = 635.5 =

__

Vinh Dinh Nguyen- PhD in Computer Science

From CNN to GNN

Node 1

g@ What if information in one channel is more important than other channel?

H

Node 1 Node?2 Node3

l 8] Node 1 1 1 0 3 7 Node 1 NI +N2 Node 1 3+8 7+-1
-1
Node 2 1 1 1 8 -1 > HEE | NI+N2+N3 2 3+8+5 | 7-1+45
x Node — Node =
Node 3 0 1 1 5 5 | Node3 N2 + N3 Node 3 8+5 | -1+5
Adjacency matrix H: node feature

Vinh Dinh Nguyen- PhD in Computer Science

Al VIETNAM
All-in-One Course

From CNN to GNN

Node 1

d

P

H

Node 1 Node?2 Node3

Vinh Dinh Nguyen- PhD in Computer Science

8 (3+8)W11 + (3+8)W12 +
[1] Node 1 1 1 0 3 7 Node 1 (7-1)W21 (7-1)W22
Node 2 1 1 1 8 -1 | Node2 € | (3es+S)Wile | (3+4B+5)W12
(7-1+5)W21 +
(7-1+5)W22
0 1 1 5 5
Node 3 Node 3 (8+5) W11 + (8+5) W12 +
(-1+5)W21 (-14+5)W22
Adjacency matrix H: node feature W: weight matrix
28

Al VIETNAM
All-in-One Course

From CNN to GNN

Node 1

d

[_81] Node 1

Node 2

Node 3

Vinh Dinh Nguyen- PhD in Computer Science

Node I Node2 Node 3
1 1 0
1 1 1
0 1 1

Adjacency matrix

H: node feature

Node 1

Node 2 x

Node 3

W: weight matrix

5 Whati formationnone channel i more importan han oter chamel?

Finally, this is Graph Convolutional Neural Network

(3+8)W11 + (7-1)W21

(3+8+5)W11+ (7-1+5)W21

(8+5) W11l + (-1+5)W21

29

From CNN to GNN

Node 1
?] Activation Function
g@ — (
[5] Normalization
5

Node 1 Node?2 Node3
l 8] Node 1 1 1 0 3 7
-1

Node2 | 1] 1 1 |98 8 | -l

Node 3 0 1 1 5 5

Adjacency matrix H: node feature

&l;EJ

Vinh Dinh Nguyen- PhD in Computer Science

W1l

W21

W: weight matrix

What if information in one node is more important than other node?

Adjacency matrix:

Adjacency matrix:

AN
|
S
i
=

layer-specific
trainable
weight matrix

(3+8)W11 + (7-1)W21

(3+8+5)W11+ (7-1+5)W21

(8+5) W11l + (-1+5)W21

mm) Attention GNN

Zachary’s karate club

There 1s a karate club that has two major stakeholders: the instructor (Mr. Hi) and the administrator. Unfortunately, the
dispute between them causes it to split into 2 clubs. The original members will need to choose a side and pick which one
to join. Their decisions will be based on how well they are connected with Mr. Hi or the administrator. This also includes
how well they are connected to members that are associated with them. The diagram below is the social graph in

representation connections between members.

=

1

NGRS ,3 N \\3 \ 4
e NN
77 /6 GHNN\

\

/

Adminstrator

Vinh Dinh Nguyen- PhD in Computer Science

Zachary’s karate club

nx.to_numpy_array(g)

v

| array([[0., 4., 5., ..., 2., 0., 0.], |

i (4., 0., 6., , 0., 0., 0.1, |

| [5., 6., @., ..., 0., 2., 0.], |

[2., 0., 0., ..., 0., 4., 4.1, |
[0., 0., 2., ..., 4., 0., 5.1, |
[0., 0., 0., ..., 4., 5., 0.1])

[39][A_mod = A + np.eye(g.number_of_nodes()) # add self-connections]

, D_mod = np.zeros_like(A_mod)
i np.fill_diagonal(D_mod, np.asarray(A_mod.sum(axis=1)).flatten

D_mod_invroot = np.linalg.in qrtm(D_mod)) i

Vinh Dinh Nguyen- PhD in Computer Science

Zachary’s karate club

——

[40] X = np.eye(g.number_of_nodes()) &[;EJ
o print(X) Input Feature X

[[1. 0. 0. 0. 0. 0.]

[0. 1. 0. 0. 0. 0.]

[0. 0. 1. 0. 0. 0.]

[0. 0. 0. . 1. 0. 0.]

[0. 0. 0. 0. 1. 0.]

[0. 0. 0. 0. 0. 1.]1]

Vinh Dinh Nguyen- PhD in Computer Science

Zachary’s karate club

class GCNLayer():
def __init__ (self, n_inputs, n_outputs, activation=None, name='"):
self.n_inputs = n_inputs
self.n_outputs = n_outputs
self.W = glorot_init(self.n_outputs, self.n_inputs)
self.activation = activation
self.name = name

def __repr__(self):
return f"GCN: W{'_'+self.name if self.name else ''} ({self.n_inputs}, {self.n_outputs})"

def forward(self, A, X, W=None):
Assumes A is (bs, bs) adjacency matrix and X is (bs, D),
where bs = "batch size" and D = input feature length
self. A=A
[self._x = (A@X).T # for calculating gradients. (D, bs) |,

Message Passin

<

if W is None:
W = self.W

[H =W @ self._X # (h, D)x(D, bs) —> (h, bs)]:
1T self.activation 1s not None:
H = self.activation(H)
self. H=H # (h, bs)
return self._H.T # (bs, h)

Vinh Dinh Nguyen- PhD in Computer Science

Different Types of Edge Connections

Relational Graph
Convolutional
Neural Network

@ How to include |=— l
various types of
Edges in GNN

Vinh Dinh Nguyen- PhD in Computer Science

Al VIETNAM
All-in-One Course

“

Edge Feature in GNN

Edge Weight in GNN

Relational GNN

Multidimension Edge Feature
Attention in GNN

Example: Graph-Level Prediction
Summary

>
>
>
>
>
>
>

en- PhD in Computer Science

Relational GNN

Age
10

)

Weight
20

Weight
60

Drink
0

=

Drink
1

Vinh Dinh Nguyen- PhD in Computer Science

Transform

-

\

Update
AGGERATE 4 A
L LA
P L Y 4+ = m 2
Normalization: e Embeddin% Values
J 2 _ J
- ‘_

__

Various types of relationship. Edge conditions GNN

Age Weight Drink

Node feature

Relational GNN

Transform Update
Age Weight Drink / \ /AGGEm / \
10 20 0 _
= =+ ™ = —
Age weight oik | N2 | /AN | T 10 20 0 Embeddin% Values
30 60 1

__

‘@@

Age Weight Drink

.l Node feature

Friend Adjacency Matrix

Vinh Dinh Nguyen- PhD in Computer Science Various types of relationship. Edge conditions GNN

Relational GNN

=

Weight Drink

30 60

Age Weight Drink
10 20 0
‘\l’

Transform

Vinh Dinh Nguyen- PhD in Computer Science

\

Update
AGGERATE 4 A
L o
4-5![4_2“___\- 4+ = m 2
Somdieaion __— Embedding Values
L -)

__

Various types of relationship. Edge conditions GNN

Age Weight Drink

Node feature

Relational GNN

Transform Update

A (" AGGERATE) 4)

Age Weight Drink /
10 20 0

= St ey o m = 1 om
Normahzatlon .
age weight oik | N7 | /AN | T 10 20 0 Embeddln% Values

30 60

__

B0
(5

Age Weight Drink

906G
2
:

__ Node feature

Vinh Dinh Nguyen- PhD in Computer Science Various types of relationship: Edge conditions GNN

GNN: Feature-wise Linear Modulation

Transform Update
= (O = O
= g’ > o™ ™ S
Drin T IR bbb G G Embedding Values
1 , R y
N\

Transform

4)

hit! =1) (@Vi(hrw

-I- rans _I: orm GNN-FiLM: Graph Neural Networks with Feature-wise Linear Modulation
XXX) How are edge "

) feat ? b

stract Most neural graph learning methods can be summarised as
@ ea' u res use . neural message passing (Gﬂmer et al., 2017): nodes are
‘@) This paper presents a new Graph Neural Network initialised with some n and then exch in-
< (GNN) type using feature-wise linear modulation formation by transforming thelr current state (in practice
Q (FILM). Maﬂ)l’ stamiarddGNN :'ariams fl:’Pagﬂ‘-e with a single linear layer) and sending it as a message to

along the edaes of a_granh hy com. X .

Vinh Dinh Nguyen- PhD in Computer Science

GNN Edge Feature: Variants

__

(
(Wi A+ W.-B + Wy -C + W,-D)
= ((@a)aGa - Ws-A+ (aa)pia-Wi-B+ (an)cza-Wy-C+ (aa)pla-W:-D)
R-GIN: A' = o MLP;5(A)+ MLP,(B)+ MLP(C)+ MLP, (D))
GNN-MLP: A' = of MLP5(A| A)+ MLP,(B|A)+ MLP,(C|A)+ MLP, (D] A))

RGDCN: A" = of Woa-A+ Wia-B + Waa-C + Wia-D)
GNN-FiILM: A" = 0(Bsa +Y5,40Wo A +B81, 4 +71,40Wi-B 485 4 + 72,4 OW2-C +B; 4 +7,aOW:1-D)

GNN-FiLM: Graph Neural Networks with Feature-wise Linear Modulation

Marc Brockschmidt !
Abstract Most neural graph learning methods can be summarised as
neural message passing (Gilmer et al., 2017): nodes are
This paper presents a new Graph Neural Network initialised with some representation and then exchange in-
(GNN) type using feature-wise linear modulation formation by transforming their current state (in practice
.(FiLM)- Ma“}l' staniarddGNN Za.riants hpiopagate with a single linear layer) and sending it as a message to
information along e edoes of 2 gran _Ccom., 11 s 3 - 1 1 A 1 1

Vinh Dinh Nguyen- PhD in Computer Science

Al VIETNAM
All-in-One Course

Edge Feature in GNN

Edge Weight in GNN

Relational GNN

Multidimension Edge Feature
Attention in GNN

Example: Graph-Level Prediction
Summary

>
>
>
>
>
>
>

en- PhD in Computer Science

Multidimensional Edge Feature

[EJ How to integrate * e Node feature Edge information
multi-dimensional Node feature Friend Friend Since Live together
edge features to the Age Weight Drink Yes 9 No
transformation of the
neighborhood How,do edge features
states? utilize in GNN?

Love to watch movie

Not Love to watch movie

Node feature

Node feature

Age Weight Drink Age Weight Drink

Vinh Dinh Nguyen- PhD in Computer Science Node feature

Multidimensional Edge Features

hv — 7| Lo,

A

UPDATE

Vinh Dinh Nguyen- PhD in Computer Science

D b(wv: Tufeun)]

weN (v) |

AGGREGATE

Message Passing in Neural Network

TRANSFORM

[edge feature | [edge feature
0 0 0
vector| vector]
edge feature
[3e ctor] 0 0 [edge feature 0
vector]
[edge feature
vector] 0 0 0 [edge feature
vector]
[edge feature
0 vector| 0 0 0
0 0 [edge feature 0 0
vector]
—J Whatis the size

of this adjacency

matrix?

Multidimensional Edge Features: MLP

Transform Update

Age Weight

O AGGERATE\ 4 A

_— SUM + »+ —> m 1 2

Normalization

10 20

0 20 o Embedding Values

Age Weight

o ©

30 60

Friend Friend Since Live together

Vinh Dinh Nguyen- PhD in Computer Science

Multidimensional Edge Features: PNAConyv

Transform

Age Weight Drink
10 20 0

=

‘@ b Age Weight Drink
\/ 30 60 1

Vinh Dinh Nguyen- PhD in Computer Science

O AGGERATE\

— SUM +
Normalization

- J

(t+1) (t) (t) (1)
XU —u [x, @ M(x, ,Xj

(j,))EE

Principal Neighbourhood Aggregation for Graph Nets

Gabriele Corso* Luca Cavalleri* Dominique Beaini
University of Cambridge University of Cambridge InVivo AT
55555555 .ac.uk 1c737@cam.ac.uk minique@invivoai
Pietro Li Petar Velickovi
ersity of Caml DeepMind
io@c am .uk arve

Update

Embedding Values

)

Friend

Friend Since Live together

Multidimensional Edge Features: Crystal GCN

Age Weight Drink
10 20 0

‘@ ! Age Weight Drink

\/ 30 60 1

Vinh Dinh Nguyen- PhD in Computer Science

Transform

O AGGERATE\

_— SUM + »+

Normalization

Concatenatetion

»(t) (t) (2)
(z,])k @[] [’U,(Z,])k |

D) Z p® (t) (), pt
+Z {mn W; bf))@g{z T)k

—

o~
\\

Crystal Graph Convolutional Neural Networks for an Accurate and
Interpretable Prediction of Material Properties

Tian Xie and Jeffrey C. Grossman
Department of Materials Science and Engineering,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
(Dated: April 10, 2018)

Update

=) = R

- /

Embedding Values

Friend Friend Since Live together

Learnable weight matrix

Edge Feature Embedding: NENN

NENN: Incorporate Node and Edge Features in Graph

Neural Networks _ ' _ '
Hierachical dual-level attention mechanism

Yulei Yang YANGYULEI18@NUDT.EDU.CN
Dongsheng Li LDS1201@163.coM
National University of Defense Technology, Chashang, China

__

Learn how importaAnt?iiﬁc nodes and edges are for the new embedding

\ Evk e &)

XN, = U(Wn - MEAN(1 Y € M})) eg, = U(We - MEAN(@

Edge feature are used in both layers to

= "(We ' MEAN(@ generate new embeeding.

xz(lﬂ) — CONCAT(x%,xgg) e§l+1) = CONCAT(eX[)i, egi))
Nodel-level Attention Edge-level Attention

Vinh Dinh Nguyen- PhD in Computer Science

Edge Feature Embedding: NENN

xn; = o (W, - MEAN({al'%;,V; € A;}) oy = U(We-MEAN(Vk € Si}))
vl J j) =-| This approach iteratively updates node

Xe; = ”(WE'MEAN(’“ c&)) o= 7 (W - MEAN(s v € Aib) and edge embeddings in order to
merge both information together

(D — cONCAT(x), x?) e) = CONCAT (e}, e’
Nodel-level Attention Edge-level Attention
Input Graph Node-level Attention Layer Edge-level Attention Layer Output Graph

Vinh Dinh Nguyen

Edge Feature: How to Use

. PyTO rC h edge_weight - GNN Layer can use weight values on the adjacency matrix

: edge_type - GNN Layer can use different edge types / relations
geometrlc edge_attr - GNN Layer can use edge features

torch_geometric.utils

torch_geometric. sampler Heterogeneous Graph Neural Network Operators
T Reduces all values from the src tensor at the indices specified in the torch_geometric.datasets
index tensor along a given dimension dim . L T Name S TECUEIE ETeETE . bipartite static lazy

torch_geometric.utils

Returns the indices that sort the tensor src along a given dimension in RGCNConv (Paper) v
group_argsort . N q
latest ascending order by value. torch_geometric.explain
torch_geometric.metrics FastRGCNConv v
Concatenates the given sequence of tensors tensors in the given
Search docs T G dimension Gl & q E torch_geometric.distributed
ImensioniEcT): CuGraphRGCNConv v
torch_geometric.contrib (Paper)
T Reduces all values in the first dimension of the src tensor within the torch_geometric.graphgym
. ranges specified in the ptr . RGATConv (Paper) v v
Installation B8 2 torch_geometric.profile
index_sort Sorts the elements of the inputs tensor in ascending order. FilMConv (Paper) \ \4 4 v
Introduction by Example GNN Cheatsheet
v g cumsum Returns the cumulative sum of elements of x . HeTCanv) {Paper) \ v
Colab Notebooks and Video Tutorials Graph Neural Network Operators
. HEATConv (Paper) v 7 v
d Computes the (unweighted) degree of a given one-dimensional index Heterogeneous Graph Neural 2
egree
tensor. Network Operators
HeteroConv v
Design of Graph Neural Networks Hypergraph Neural Network
softmax Computes a sparsely evaluated softmax. Operators
o o HANC: Paper) v v
Working with Graph Datasets TR —. onv (Paper)
Use-Cases & Applications Llexsort Performs an indirect stable sort using a sequence of keys. Operators
Distributed Training
cart adna inday Row-wice cnrte adaa indax

Vinh Dinh Nguyen- PhD in Computer Science

Al VIETNAM
All-in-One Course

]
“

Edge Feature in GNN

Edge Weight in GNN

Relational GNN

Multidimension Edge Feature
Attention in GNN

Example: Graph-Level Prediction
Summary

>
>
>
>
>
>
>

en- PhD in Computer Science

Attention in Graph Neural Network

® |-

- hi
@ 1 1 0 1 0 Node feature Node feature b
‘P) ! 0 1 0 1 : h3
@ 0 1 0 1 0 e feature 4
0 0 1 0 1 h5

Node feature

A
v

Node feature

Age Weight Drink

Adjacency Matrix Features per node

&l —=| How to use this feature matrix in GNN

Vinh Dinh Nguyen- PhD in Computer Science

GNN: Look at the 1st Layer

@ Features per node [5,3]
1 1 1 (] (]

hi Learnable weight matrix [3,8]
@ 1 1 0 1 0 hZ
h3
‘91’ 1 0 1 0 1
) S > ¢
@ 0 1 0 1 0
0 0 1 0 1 h5 l
Adjacency matrix [5,5]
h'1
Activation function '
h'3
h'4
h'5

Embedding Features per node[1,8]: information of their own node feature and neigbor node features
Vinh Dinh Nguyen- PhD in Computer Science

All-in-One Course

v (;NN: Look at the 1st Layer

& e Features per node [5,3]
() }\\1\Q 1 h3
‘.?) 1 N\ 1\\0 1 x "
0 1 x\ 1\\0

e } 0] \0\ 15 hb

Adjacency matrix [5,5]

Learnable weight matrix [3,8]

Activation function

h'2

h'3

Self loop for the h'4
aggregation process h's

Embedding Features per node[1,8]: information of their own node feature and neigbor node features 55
Vinh Dinh Nguyen- PhD in Computer Science

GNN: Attention Mechanism

Learn how important node J's

features are for node I: attention For the word ‘play’, the word ‘children’ is more important
coefficient than the word ‘the’

The children play in the garden.

L | L]

The model should pay
more attention to node 2

‘ Attention mechanism

—l
>

Only considering neighbor nodes

exp(el-j) exp(a(Wh;, Whj))

(RS O T e S e e s St o
lj f](U) Zk&'N(i) exp(eik) ZkEN(i) exp(a(Whi’ Wh]))

Vinh Dinh Nguyen- PhD in Computer Science

GNN: Self-Attention Mechanism

Leakly RelLU Softmax

exp(LeakyReLU (wg [Wh;||Wh;]))

Y ken(i) €Xp(LeakyReLU (wg [Wh;||[Wh;]))

Vinh Dinh Nguyen- PhD in Computer Science

Al VIETNAM
All-in-One Course

]
“

Edge Feature in GNN

Edge Weight in GNN

Relational GNN

Multidimension Edge Feature
Attention in GNN

Example: Graph-Level Prediction
Summary

>
>
>
>
>
>
>

en- PhD in Computer Science

GNN: Graph Prediction

G

m=iElE]l=] S e ENEIENEN.

Graph-level prediction Node-level prediction

Vinh Dinh Nguyen- PhD in Computer Science

GNN: Graph Prediction

Zcz Solute O\,/’/‘ Ii
[Installing Pytorch Geometric and RDKit] @ /EIi l

[Background info on the Dataset]

Nz

AN N ,
- N Solvent Solution
Looking into the Dataset
) ’ Salt Water /_‘ Salt-Water '_‘
e ~ .
Visualizing molecules I \‘
+

[Implementing the Graph Neural Network] ~—

Solute

Solvent Solution

Vinh Dinh Nguyen- PhD in Computer Science

GNN: Graph Prediction

[InstaHnwg PytorCh } i I'pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-{TORCH}+{CUDA}.html i

Geometric and RDKit pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-{TORCH}+{CUDA}.html :
| pip install torch-cluster —f https://pytorch-geometric.com/whl/torch-{TORCH}+{CUDA}.html |
| Ipip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-{TORCH}+{CUDA}.html !

{] | 'pip install torch-geometric |

!pip install rdkit
- ~ ‘import rdkit

§from torch_geometric.datasets import MoleculeNet
\ J il
4 2\
\\ J

Vinh Dinh Nguyen- PhD in Computer Science

|

|

Background info on the
Dataset

|

Vinh Dinh Nguyen- PhD in Computer Science

GNN: Graph Prediction

How are different molecules dissolving in water?

S S S —

Input

U

Solvent Solution

ESOL is a small dataset consisting of water solubility data for 1128 compounds. The
dataset has been used to train models that estimate solubility directly from chemical
structures (as encoded in SMILES strings). Note that these structures don't include
3D coordinates, since solubility is a property of a molecule and not of its particular
conformers.

Looking into the Dataset

Vinh Dinh Nguyen- PhD in Computer Science

GNN: Graph Prediction

. # Investigating the dataset i
' print("Dataset type: ", type(data)) i
' print("Dataset features: ", data.num_features) i
. print("Dataset target: ", data.num_classes) i
. print("Dataset length: ", data.len) i
. print("Dataset sample: ", datal@]) |
. print("Sample nodes: ", datal@].num_nodes) i
. print("Sample edges: ", data[@].num_edges) i

edge_index = graph connections

smiles = molecule with its atoms

x = node features (32 nodes have each 9 features)
y = labels (dimension)

__

Dataset type: <class 'torch_geometric.datasets.molecule_net.MoleculeNet'>

Dataset features: 9

Dataset target: 734

Dataset length: <bound method InMemoryDataset.len of ESOL(1128)>

Dataset sample: Data(x=[32, 9], edge_index=[2, 68], edge_attr=[68, 3], smiles='0CC30C(0CC20C(OC(C#N)
Sample nodes: 32 |
Sample edges: 68

Graph Prediction

GNN

IIIIIIIIIIIIIIII

Investigating the features

X
D
[o NN
a[
L @©
v
(©
H ©
L e e e e e e e e Y
)) e N N\)

¥ 8

0N &

© ‘S

._qw_ n

) s

(D) a

= =

—— o

o

o c

-— =

[(]

— T

(@)) .

(e c

= 2

(@) >

o =

— =

\ J \ J - J J\ J £

=

=

GNN: Graph Prediction

——

[} Edata[@]["smiles"]

10CC30C(0CC20C(0C(C#N) clccccel)C(0)C(0)€20)C(0)C(0)C30

[} Efrom rdkit import Chem
- from rdkit.Chem.Draw import IPythonConsole
' molecule = Chem.MolFromSmiles(datal[@] ["smiles"])

4 N |
- molecule
\§ J
OH
- N 0
. . O+
Visualizing molecules
& J 0
.2

__

Vinh Dinh Nguyen- PhD in Computer Science

GNN: Graph Prediction

. import torch :
{] . from torch.nn import Linear |

. import torch.nn.functional as F

from torch_geometric.nn import GCNConv, TopKPooling, global_mean_pool

from torch_geometric.nn import global_mean_pool as gap, global_max_pool as gmp
- embedding_size = 64

{] iclass GCN(torch.nn.Module): |
def __init_ (self):

i # Init parent
- ~ | super(GCN, self).__init_ () :
torch.manual_seed(42) !

GCN layers i
- N i self.initial_conv = GCNConv(data.num_features, embedding_size)
' self.convl = GCNConv(embedding_size, embedding_size)
self.conv2 = GCNConv(embedding_size, embedding_size)
self.conv3 = GCNConv(embedding_size, embedding_size)

[Implementing the Graph] # Output layer

Neural Network self.out = Linear(embedding_sizex2, 1)

__

Vinh Dinh Nguyen- PhD in Computer Science

GNN: Graph Prediction

import torch .
+ from torch.nn import Linear !
{] ' import torch.nn.functional as F '

i from torch_geometric.nn import GCNConv, TopKPooling, global_mean_pool .
. from torch_geometric.nn import global_mean_pool as gap, global_max_pool as gmp
. embedding_size = 64 !

{] iclass GCN(torch.nn.Module): |
' def __init__ (self):

i # Init parent
- N i super(GCN, self).__init_ ()

i torch.manual_seed(42) i
\\ J i i
| # GCN layers |
- N ; self.initial_conv = GCNConv(data.num_features, embedding_size) '
e s e
N J | celf. conv3 = gd (initial_conv): GCNConv(9, 64)
i) - (convl): GCNConv(64, 64)
|mp|ementing the Graph # Output layer (conv2): GCNConv(64, 64)
\ | Network ; celf.out = Line (conv3): GCNConv(64, 64)
€ural INetwor !) (out): Linear(in_features=128, out_features=1, bias=True)
R)
Number of parameters: 13249
Vinh Dinh Nguyen- PhD in Computer Science

GNN: Graph Prediction

def train(data):
Enumerate over the data
for batch in loader:
Use GPU
batch.to(device)
Reset gradients
optimizer.zero_grad()

A=

Passing the node features and the connection Starting traini
. arting training...
pred, embedding = model(batch.x.float(), batch Epoch 0 | Train Loss 3.377596378326416
P N # Calculating the loss and gradients Epoch 100 | Train Loss 0.9617947340011597
loss = loss_fn(pred, batch.y) Epoch 200 | Tra}n Loss 1.0771363973617554
1 el d() Epoch 300 | Train Loss 0.6295697093009949
L) S0l el _ Epoch 400 | Train Loss 0.37517455220222473
Update using the gradients Epoch 500 | Train Loss 0.465716689825058
g N opﬁ: Epoch 600 | Train Loss 0.5129485726356506
. Epoch 700 | Train Loss 0.21677978336811066
return Epoch 800 | Train Loss ©.33871856331825256
_____________ 264 | | Epoch 900 | Train Loss 0.3640660345554352
~ 4 Epoch 1000 | Train Loss 0.20501013100147247
201 Epoch 1100 | Train Loss ©.18023353815078735
. Epoch 1200 | Train Loss ©0.2812242805957794
Implementing the Graph 15 1 Epoch 1300 | Train Loss 0.18207958340644836
| Epoch 1400 | Train Loss ©.1321338415145874
Neural Network Lo Epoch 1500 | Train Loss 0.18665631115436554
. Epoch 1600 | Train Loss 0.1817774772644043
Epoch 1700 | Train Loss ©0.09456530958414078
_ _ _ _ 0.0 Epoch 1800 | Train Loss 0.23615044355392456
Vinh Dinh Nguyen- PhD in Computer Science 0 250 500 750 1000 1250 1500 1750 2000 Epoch 1900 | Train Loss 0.11381624639034271

GNN: Graph Prediction

| 2
[} : 1 °
| o
| 0 -
i oo
[R Y
| . o?]
B 2 a o * o...' ‘ B
f) i a o ¢ ¢ L 1 ® 0
i >| -3 o, .‘ o : o
_ J | .: p)
-4 - A .
_S 1 o ..
N\) i *% o o
- 61 e "
Implementing the Graph -7 . ' . . , ; ; ;
Neural Network ’ -7 -6 5 -4 -3 =2 -l 0 1 2

Vinh Dinh Nguyen- PhD in Computer Science

Vision GNN: Read and Understand

Vision GNN: An Image is Worth Graph of Nodes

Kai Han''?* Yunhe Wang?* Jianyuan Guo? Yehui Tang?® Enhua Wu'+*
!State Key Lab of Computer Science, ISCAS & UCAS
2Huawei Noah’s Ark Lab
3Peking University “University of Macau
{kai.han,yunhe.wang}@huawei.com, weh@ios.ac.cn

Abstract

Network architecture plays a key role in the deep learning-based computer vision |
system. The widely-used convolutional neural network and transformer treat the |
image as a grid or sequence structure, which is not flexible to capture irregular |
and complex objects. In this paper, we propose to represent the image as a graph i
structure and introduce a new Vision GNN (ViG) architecture to extract graph- !
level feature for visual tasks. We first split the image to a number of patches !
which are viewed as nodes, and construct a graph by connecting the nearest !
neighbors. Based on the graph representation of images, we build our ViG model |
to transform and exchange information among all the nodes. ViG consists of |
two basic modules: Grapher module with graph convolution for aggregating and |
updating graph information, and FFN module with two linear layers for node |
feature transformation. Both isotropic and pyramid architectures of ViG are built E
with different model sizes. Extensive experiments on image recognition and object !
detection tasks demonstrate the superiority of our ViG architecture. We hope this !
pioneering study of GNN on general visual tasks will provide useful inspiration !
and experience for future research. |
The PyTorch code is available at https://github.com/huawei-noah/ |
Efficient-AI-Backbones and the MindSpore code is available at https: |
//gitee.com/mindspore/models. i

Vinh Dinh Nguyen- PhD in Computer Science

Vision GNN: Read and Understand

Abstract

Network architecture plays a key role in the deep learning-based computer vision

System. i The widely-used convolutional neural network and
and complex objects. In this paper, we propose to represent the image as a graph transformer treat the image as a grid or sequence structure,
structure and introduce a new Vision GNN (ViG) architecture to extract graph- which is not flexible to capture irregular and complex
level feature for visual tasks. We first split the image to a number of patches obi

. : ; jects
which are viewed as nodes, and construct a graph by connecting the nearest

neighbors. Based on the graph representation of images, we build our ViG model - l
to transform and exchange information among all the nodes. ViG consists of

two basic modules: Grapher module with graph convolution for aggregating and
updating graph information, and FFN module with two linear layers for node) . .
feature transformation. Both isotropic and pyramid architectures of ViG are built structure and introduce a new Vision GNN (ViG)
with different model sizes. Extensive experiments on image recognition and object architecture to extract graph level feature for visual tasks
detection tasks demonstrate the superiority of our ViG architecture. We hope this
pioneering study of GNN on general visual tasks will provide useful inspiration
and experience for future research.

In this paper, we propose to represent the image as a graph

Vinh Dinh Nguyen- PhD in Computer Science

Vision GNN: Read and Understand

R g e

ey
o i
EFEE

(a) Grid structure. (b) Sequence structure. (b) Graph structure.

& [llustration of the grid, sequence and graph representation of the image

Vinh Dinh Nguyen- PhD in Computer Science

Vision GNN: Read and Understand

- O E—————. ™
I
I
: (‘ﬁ‘)
| ® &,
» | |8 g L RN Head for]
T = q gn
| ? Q@ recognition
E \ S B O Head
I
\

——————————————————————————————

Graph Network ViG framework

The framework of the proposed ViG model

Vinh Dinh Nguyen- PhD in Computer Science

Vision GNN: Read and Understand

(a) Input image.

Vinh Dinh Nguyen- PhD in Computer Science

SRR Al - il
;THGWJIﬂ.zFéw
TR

3 ‘n.-zl!ﬁli";k-..d.
RERIDIREES VN iKY

”HNHFEE»JIEEﬁ
fZdSiaERENEAEE
V57 5 I I O I S RN
Al N I O O

EENREUAiENREERER

EEENEEREDEERENE
EpTTTERaIENEEEE
EESEEEEEEEEENE
HE EEEEEEEEF
HE 'EEEEEEEEr
== l...llli

E

ENEREENDRREERE
(b) Graph connection in the 1st block.

il 30 A 0 0 S 0 DX Y 7

QTR (03 A R
DEENRESRYENKE
FEEERD.. a1
DERDRDRrFaaRINER
EEDRRUAENRENRER

EEENEAREDEEEEND
Lo dedeabed b bl] P |]]
| BT TTT T e |
HE "EEEEEEEEFTm
HE - EEEEEEEE" W
.I l...-..l -

DEAEER I BEVNEER
ENEREEUNDEREEDEE

(c) Graph connection in the 12th block.

Visualization of the constructed graph
structure. The pentagram is the center
node, and the nodes with the same color
are its neighbors in the graph

vV_-

Example: CIFAR-10 Dataset

The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are
50000 training 1images and 10000 test images.

airplane %.%V..=;i
automobile EH'E‘B‘
oed - mi I WERS W
S BN P
deer ..R&E-E'
SO | R 35 [o] $IWP
rog I I R O N
e BN REZEETR
o s el e PR e
truck Jgh’in

Vinh Dinh Nguyen- PhD in Computer Science

Example: CIFAR-10 Dataset

#params Eval Accuracy
CNN (LeNet) 5.6M 70.34
ViT 5.6M 48.29

ViG 5. TM 74.93

Vinh Dinh Nguyen- PhD in Computer Science

Example: CIFAR-10 Dataset

class LeNet(nn.Module):

def __init_ (self, imdim=3, num_classes=10): CNN for Image Classification
super(LeNet, self).__init_ ()
self.convl = nn.Conv2d(imdim, 64, kernel_size=5, stride=1, padding=0)
self.mp = nn.MaxPool2d(2)
self.relul = nn.ReLU(inplace=True)

self.conv2 nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=0) 100

self.relu2 = nn.ReLU(inplace=True)
self.fcl = nn.Linear(128 x 5 x 5, 1024)
self.relu3 = nn.ReLU(inplace=True)
self.fc2 = nn.Linear(1024, 1024)
self.relu4 = nn.ReLU(inplace=True)

—— train_accuracy
—— test_accuracy

90 A

80 A

self.fc3 = nn.Linear(1024, 1024)

70
self.fc4 = nn.Linear(1024, num_classes)

def forward(self, x):
in_size = x.size(0)
outl = self.mp(self.relul(self.convl(x)))
out2 = self.mp(self.relu2(self.conv2(outl)))
out2 = out2.view(in_size, -1)

60

out3 = self.relu3(self.fcl(out2))

out = self.relud(self.fc2(out3)) 0 5 10 15 20 25

out = self.fc3(out)

return self.fc4(out)

Vinh Dinh Nguyen- PhD in Computer Science

Example: CIFAR-10 Dataset

class ViT(nn.Module):
def __init_ (
self,
*,
image_size,
patch_size,
num_classes,

Vision Transformer for Image
Classification

dim, :
depth, sl train_accuracy
heads, —— test_accuracy
mlp_dim,

pool="cls", —

channels=3,
dim_head=64,

emb_dropout=0.0,

super().__init__ ()

4-
image_height, image_width = pair(image_size) g
patch_height, patch_width = pair(patch_size)
40-
assert (
image_height % patch_height == @ and image_width % patch_width ==
), "Image dimensions must be divisible by the patch size." 38

num_patches = (image_height // patch_height) * (image_width // patch_width)
patch_dim = channels * patch_height * patch_width
assert pool in {

i dropout=0.0, | 44 -
i "C-LS", i

Vinh Dinh Nguyen- PhD in Computer Science

Example: CIFAR-10 Dataset

train

for epoch in range(max_epoch):
model.train() Vision GNN for Image Classification
running_loss = 0.0
running_correct = @ # to track number of correct predictions
total = @ # to track total number of samples

— train_accuracy
—— test_accuracy

for i, (inputs, labels) in enumerate(trainloader, 0):
Move inputs and labels to the device
inputs, labels = inputs.to(device), labels.to(device) 90 -

Zero the parameter gradients
optimizer.zero_grad() 80 -

Forward pass
outputs = model(inputs)

70 A
loss = criterion(outputs, labels)
running_loss += loss.item() 60 -
Backward pass and optimization
loss.backward()
optimizer.step() 50 1
Determine class predictions and track accuracy 0 5 10 15 20 25

_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
running_correct += (predicted == labels).sum().item()

Vinh Dinh Nguyen- PhD in Computer Science

Al VIETNAM
All-in-One Course

]
“

Edge Feature in GNN

Edge Weight in GNN

Relational GNN

Multidimension Edge Feature
Attention in GNN

Example: Graph-Level Prediction
Summary

>
>
>
>
>
>
>

en- PhD in Computer Science

Summary

E‘ Mo Weht Dink Node feature
Why are edge

features important X Node feature
Age Weight Drink

Love to watch movie

Not Love to watch movie
Age Weight Drink

Node feature 1T Node feature

Age Weight Drink Age Weight Drink

Node feature

Vinh Dinh Nguyen- PhD in Computer Science

Edge information

Binary information

0-1

Does she love watching
movie?

* How to integrate edge feature to GNN

* Edge Weight in GNN

 Relational GNN

* Multidimensional Edge Feature

e Attention in GNN

* Graph-level prediction

