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“For, you see, so many out-of-the-way things had

happened lately, that Alice had begun to think that very

few things indeed were really impossible.”

— Chapter 1, Down the Rabbit-Hole



Foreword

This book is an introduction to the topic of (deep) neural networks (NNs),
the core technique at the hearth of large language models, generative artificial
intelligence - and many other applications. Because the term neural comes
with a lot of historical baggage, and because NNs are simply compositions of
differentiable primitives, I refer to them – when feasible – with the simpler
term differentiable models.

In 2009, I stumbled almost by chance upon a paper by Yoshua Bengio on the
power of ‘deep’ NNs [B+09], at the same time when automatic differentia-
tion libraries like Theano [ARAA+16] were becoming popular. Like Alice, I
had stumbled upon a strange programming realm - a differentiable wonder-
land where simple things, such as selecting an element, were incredibly hard,
and other things, such as recognizing cats, were amazingly simple.

I have spent more than ten years reading about, implementing, and teaching
about these models. This book is a rough attempt at condensing something
of what I have learned in the process, with a focus on their design and com-
ponents. Because the field is evolving quickly, I have tried to strike a good
balance between theory and code, historical considerations and recent trends.
I assume the reader has some exposure to machine learning and linear algebra,
but I try to cover the preliminaries when necessary.

Gather round, friends: it’s time for our beloved
Alice’s adventures in a differentiable wonderland!
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1 | Introduction

Neural networks have become an integral component of our everyday’s world,
either openly (e.g., in the guise of large language models, LLMs), or hidden
from view, by powering or empowering countless technologies and scientific
discoveries [WFD+23] including drones, cars, search engines, molecular de-
sign, and recommender systems. As we will see, all of this has been done by
relying on a very small set of guiding principles and components, forming the
core of this book, while the research focus has shifted to scaling them up to the
limits of what is physically possible.

The power of scaling is embodied in the relatively recent concept of neural
scaling laws, which has driven massive investments in artificial intelligence
(AI) [KMH+20, HBE+24]: informally, for practically any task, simultaneously
increasing data, compute power, and the size of the models – almost always –
results in a predictable increase in accuracy. Stated in another way, the compute
power required to achieve a given accuracy for a task is decreasing by a con-
stant factor per period of time [HBE+24]. The tremendous power of combin-
ing simple, general-purpose tools with exponentially increased computational
power in AI was called the bitter lesson by R. Sutton.1

If we take scaling laws as given, we are left with an almost magical tool. In a
nutshell, neural networks are optimized to approximate some probability dis-
tribution given data drawn from it. In principle, this approximation may fail:
for example, modern neural networks are so large that they can easily memo-
rize all the data they are shown [ZBH+21] and transform into a trivial look-up
table. Instead, trained models are shown to generalize well even to tasks that

1R. Sutton, The Bitter Lesson, http://www.incompleteideas.net/IncIdeas/

BitterLesson.html.
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2 Introduction

Figure F.1.1: For the task of language modeling (i.e., predicting text) performance,
evaluated here in terms of perplexity, has steadily decreased, while the size of the models
has constantly increased. This means that the increase in performance is mostly driven
by data scaling, with variations in modelling becoming asymptotically less significant.
Reproduced from [HBE+24].

are not explicitly considered in the training data [ASA+22]. In fact, as the size
of the datasets increases, the concept of what is in-distribution and what is
out-of-distribution blurs, and large-scale models show hints of strong general-
ization capabilities and a fascinating low dependency on pure memorization,
i.e., overfitting [PBE+22].

The emergence of extremely large models that can be leveraged for a variety
of downstream tasks (sometimes called foundation models), coupled with a
vibrant open-source community,2 has also shifted how we interact with these
models. Many tasks can now be solved by simply prompting (i.e., interact-
ing with text or visual instructions) a pre-trained model found on the web
[ASA+22], with the internals of the model remaining a complete black-box.
From a high-level perspective, this is similar to a shift from having to programs
your tools in, e.g., C++, towards relying on open-source or commercial soft-
ware whose source code is not accessible. The metaphor is not as far fetched
as it may seems: nowadays, few teams worldwide have the compute and the
technical expertise to design and release truly large-scale models such as the
Llama LLMs [TLI+23], just like few companies have the resources to build en-
terprise CRM software.

And in the same way, just like open-source software provides endless possibili-

2https://huggingface.co/

2
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Chapter 1: Introduction 3

ties for customizing or designing from scratch your programs, customer-grade
hardware and a bit of ingenuity gives you a vast array of options to experiment
with differentiable models, from fine-tuning them for your tasks [LTM+22] to
merging different models [AHS22], quantizing them for low-power hardware,
testing their robustness, or even designing completely new variants and ideas.
For all of this, you need to look ‘under the hood’ and understand how these
models process and manipulate data internally, with all their tricks and idios-
incrasies that are born from experience and debugging. This book is an entry
point into this world: if, like Alice, you are naturally curious, I hope you will
appreciate the journey.

About this book

We assume our readers are familiar with the basics of machine learning (ML),
and more specifically supervised learning (SL). SL can be used to solve com-
plex tasks by gathering data on a desired behavior, and ‘training’ (optimiz-
ing) systems to approximate that behavior. This deceptively simple idea is
extremely powerful: for example, image generation can be turned into the
problem of collecting a sufficiently large collection of images with their cap-
tions; simulating the English language becomes the task of gathering a large
collection of text and learning to predict a sentence from the preceding ones;
and diagnosing an X-ray becomes equivalent to having a large database of scans
with the associated doctors’ decision (Figure F.1.2).

In general, learning is a search problem. We start by defining a program with
a large number of degree-of-freedoms (that we call parameters), and we manip-
ulate the parameters until the model performance is satisfying. To make this
idea practical, we need efficient ways of searching for the optimal configuration
even in the presence of millions (or billions, or trillions) of such parameters.
As the name implies, differentiable models do this by restricting the selection
of the model to differentiable components, i.e., mathematical functions that
we can differentiate. Being able to compute a derivative of a high-dimensional
function (a gradient) means knowing what happens if we slightly perturb their
parameters, which in turn leads to automatic routines for their optimization
(most notably, automatic differentiation and gradient descent). Describing
this setup is the topic of the first part of the book (Part I, Compass and Nee-
dle), going from Chapter 2 to Chapter 6.

3



4 Introduction

Image 
captioning

Paris

"What is the capital
of France?"

Image
generation

"An image of the
Tour Eiffel"

Audio query
answering

"An image of the
Tour Eiffel"

Figure F.1.2: Most tasks can be categorized based on the desired input - output we need:
image generation wants an image (an ordered grid of pixels) from a text (a sequence of
characters), while the inverse (image captioning) is the problem of generating a caption
from an image. As another example, audio query answering requires a text from an audio
(another ordered sequence, this time numerical). Fascinatingly, the design of the models
follow similar specifications in all cases.

By viewing neural networks as simply compositions of differentiable primi-
tives we can ask two basic questions (Figure F.1.3): first, what data types can
we handle as inputs or outputs? And second, what sort of primitives can we
use? Differentiability is a strong requirement that does not allow us to work
directly with many standard data types, such as characters or integers, which
are fundamentally discrete and hence discontinuous. By contrast, we will see
that differentiable models can work easily with more complex data represented
as large arrays (what we will call tensors) of numbers, such as images, which
can be manipulated algebraically by basic compositions of linear and nonlinear
transformations.

In the second part of the book we focus on a prototypical example of differ-
entiable component, the convolutional operator (Part II, from Chapter 7 until
Chapter 9). Convolutions can be applied whenever our data can be repre-
sented by an ordered sequence of elements: these include, among others, au-
dio, images, text, and video. Along the way we also introduce a number of
useful techniques to design deep (a.k.a., composed of many steps in sequence)
models, as long as several important ideas such as text tokenization, autore-
gressive generation of sequences, and causal modeling, which form the basis
for state-of-the-art LLMs.

The third part of the book (Part III, Down the Rabbit Hole) continues our

4



Chapter 1: Introduction 5

Figure F.1.3: Neural net-
works are sequences of differ-
entiable primitives which op-
erate on structured arrays (ten-
sors): each primitive can be
categorized based on its in-
put/output signature, which in
turn defines the rules for com-
posing them.

def my_program(x: tensor) -> tensor:
    ...
    ...

    ...

    return y

Input types

Output types

Differentiable
primitives

exploration of differentiable models by considering alternative designs for sets
(Chapter 10), graphs (Chapter 12), and finally recurrent layers for temporal
sequences (Chapter 13).

The book is complemented by a website3 where I collect additional chapters
and material on topics of interest that do not focus on a specific type of data,
including generative modelling, conditional computation, transfer learn-
ing, and explainability. These chapters are more research-oriented in nature
and can be read in any order. Hopefully they will be part of a second volume
if time allows.

What is “differentiable programming”?

Neural networks have a long and rich history. The name itself is a throw-
back to early attempts at modelling (biological) neurons in the 20th century,
and similar terminology has remained pervasive: to be consistent with existing
frameworks, in the upcoming chapters we may refer to neurons, layers, or, e.g.,
activations. After several waves of interest, the period between 2012 and 2017
saw an unprecedented rise in complexity in the networks, spurred by several
large-scale benchmarks and competitions, most notably the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) that we cover in Chapter 9.
A second major wave of interest came from the introduction of transformers
(Chapter 10) in 2017: just like computer vision was overtaken by convolu-
tional models a few years before, natural language processing was overtaken
by transformers in a very short period. Further improvements in these years

3https://sscardapane.it/alice-book

5
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6 Introduction

were done for videos, graphs (Chapter 12), and audio, culminating in the cur-
rent excitement around LLMs, multimodal networks, and generative models.4

This period paralleled a quick evolution in terminology, from the connec-
tionism of the 80s [RHM+86] to the use of deep learning for referring to
modern networks in opposition to the smaller, shallower models of the past
[B+09, LBH15]. Despite this, all these terms remain inexorably vague, be-
cause modern (artificial) networks retain almost no resemblance to biologi-
cal neural networks and neurology [ZER+23]. Looking at modern neural net-
works, their essential characteristic is being composed by differentiable blocks:
for this reason, in this book I prefer the term differentiable models when
feasible. Viewing neural networks as differentiable models leads directly to
the wider topic of differentiable programming, an emerging discipline that
blends computer science and optimization to study differentiable computer
programs more broadly [BR24].5

As we travel through this land of differentiable models, we are also traveling
through history: the basic concepts of numerical optimization of linear models
by gradient descent (covered in Chapter 4) were known since at least the XIX
century [Sti81]; so-called “fully-connected networks” in the form we use later
on can be dated back to the 1980s [RHM+86]; convolutional models were
known and used already at the end of the 90s [LBBH98].6 However, it took
many decades to have sufficient data and power to realize how well they can
perform given enough data and enough parameters.

While we do not have space to go in-depth on all possible topics (also due
to how quickly the research is progressing), I hope the book provides enough
material to allow the reader to easily navigate the most recent literature.

4This is not the place for a complete historical overview of modern neural networks; for the
interested reader, I refer to [Met22] as a great starting point.

5Like many, I was inspired by a ‘manifesto’ published by Y. LeCun on Facebook in 2018:
https://www.facebook.com/yann.lecun/posts/10155003011462143. For the connection
between neural networks and open-source programming (and development) I am also thankful
to a second manifesto, published by C. Raffel in 2021: https://colinraffel.com/blog/a-
call-to-build-models-like-we-build-open-source-software.html.

6For a history of NNs up to this period through interviews to some of the main charac-
ters, see [AR00]; for a large opinionated history there is also an annotated history of neu-
ral networks by J. Schmidhuber: https://people.idsia.ch/~juergen/deep-learning-

history.html.

6
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Chapter 1: Introduction 7

AI hype - except it is 1958, and the US psychologist Frank Rosenblatt has gathered up
significant media attention with his studies on “perceptrons”, one of the first working
prototypes of neural networks.

Notation

The fundamental data type when dealing with neural networks is a tensor,7

which we define as an n-dimensional array of objects, typically real-valued
numbers. With the necessary apology to any mathematician reading us,8 we
call n the rank of the tensor. The notation in the book vary depending on n:

n= 0 : with a slight abuse of notation, this is just a single value (a scalar).
For scalars, we use lowercase letters, such as x or y .

n= 1 : this is a column of values, i.e., a vector. For vectors we use a lowercase
bold font, such as x. The corresponding row vector is denoted by x⊤

when we need to distinguish them. We can also ignore the transpose for
readability, if the shape is clear from context.

n= 2 : a rectangular array of values, i.e., a matrix. We use an uppercase bold
font, such as X or Y.

n> 2 : no specific notation is used. We avoid calligraphic symbols such asX ,
that we reserve for sets or probability distributions.

7In the scientific literature, tensors have a more precise definition as multilinear operators
[Lim21], while the objects we use in the book are simpler multidimensional arrays. Although
technically a misnomer, the use of tensor is so widespread that we keep this convention here.

8Assuming anyone is actually reading us.
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8 Introduction

For working with tensors, we use a variety of indexing strategies described bet-
ter in Section 2.1. In most cases, understanding an algorithm or an operation
boils down to understanding the shape of each tensor involved. To denote the
shape concisely, we use the following notation:

X ∼ (b, h, w, 3)

This is a rank-4 tensor with shape (b, h, w, 3). Some dimensions can be pre-
specified (e.g., 3), while other dimensions can be denoted by variables. We
use the same symbol to denote drawing from a probability distribution, e.g.,
ϵ ∼ N (0,1), but we do this rarely and the meaning of the symbol should
always be clear from context. Hence, x∼ (d) will substitute the more common
x ∈ Rd , and similarly for X ∼ (n, d) instead of X ∈ Rn×d . Finally, we may want
to constraint the elements of a tensor, for which we use a special notation:

1. x∼ Binary(c) denotes a tensor with only binary values, {0,1}.

2. x∼∆(a) denotes a vector belonging to the so-called simplex, i.e., x i ≥ 0
and

∑

i x i = 1. For tensors with higher rank, e.g., X∼∆(n, c), we assume
the normalization is applied with respect to the last dimension (e.g., in
this case each row of Xi belongs to the simplex).

Additional notation is introduced along each chapter when necessary.

Final considerations

The book stems from my desire to give a coherent form to my lectures for a
course called Neural Networks for Data Science Applications, which I have
been teaching in Sapienza for a few years. The core chapters of the book con-
stitute the main part of the course, while the last chapters are topics that I cover
on and off depending on the year. Some parts have been supplemented by ad-
ditional courses I have taught (or I intend to teach), including parts of Neural
Networks for Computer Engineering, an introduction to machine learning for
Telecommunication Engineering, plus a few tutorials, PhD courses, and sum-
mer schools over the years.

There are already a number of excellent (and recent) books on the topic of
modern, deep neural networks, including [Pri23, ZLLS23, BB24, Fle23, HR22].

8



Chapter 1: Introduction 9

This book covers a similar content to all of these in the beginning, while the ex-
position and some additional parts (or a few sections in the advanced chapters)
intersect less, and they depend mostly on my research interests. I hope I can
provide an additional (and complementary) viewpoint on existing material.

As my choice of name suggests, understanding differentiable programs comes
from both theory and coding: there is a constant interplay between how we
design models and how we implement them, with topics like automatic dif-
ferentiation being the best example. The current resurgence of neural net-
works (roughly from 2012 onwards) can be traced in large part to the avail-
ability of powerful software libraries, going from Theano [ARAA+16] to Caffe,
Chainer, and then directly to the modern iterations of TensorFlow,9 PyTorch,10

and JAX,11 among others. I try whenever possible to connect the discussion
to concepts from existing programming frameworks, with a focus on PyTorch
and Jax. The book is not a programming manual, however, and I refer to the
documentation of the libraries for a complete introduction to each of them.

Before moving on, I would like to list a few additional things this book is not.
First, I have tried to pick up a few concepts that are both (a) common today,
and (b) general enough to be of use in the near future. However, I cannot
foresee the future and I do not strive for completeness, and several parts of
these chapters may be incomplete or outdated by the time you read them. For
each concept I try to provide a few examples of variations that exists in the
literature (e.g., from batch normalization to layer normalization). However,
keep in mind that hundreds more exist: I invite you for this to an exploration
of the many pages of Papers With Code. With all this in mind, we are ready
for our magical tour in the land of differentiable models.

Acknowledgments

Equations’ coloring is thanks to the beautiful st--/annotate-equations
package.12 Unless otherwise specified, the images of Alice in Wonderland in
the figures are reproductions from the original Arthur Rackham’s 1907 illustra-

9https://www.tensorflow.org/
10https://pytorch.org/
11https://jax.readthedocs.io/en/latest/
12https://github.com/st--/annotate-equations/tree/main
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10 Introduction

tions, thanks to Wikimedia.13 I thank Roberto Alma for feedback on a previous
draft of the book.

13https://commons.wikimedia.org/wiki/Category:Alice%27s_adventures_in_

Wonderland_(Rackham,_1907)
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Part I

Compass and needle

“Would you tell me, please, which way I ought to go from here?”

“That depends a good deal on where you want to get to,” said the Cat.

“I don’t much care where” said Alice.

“Then it doesn’t matter which way you go,” said the Cat.

— Chapter 6, Pig and Pepper

11





2 | Mathematical preliminaries

About this chapter

We compress here the mathematical concepts required to follow the book.
We assume prior knowledge on all these topics, focusing more on describ-
ing specific notation and giving a cohesive overview. When possible, we
stress the relation between some of this material (e.g., tensors) and their
implementation in practice.

The chapter is composed of three parts that follow sequentially from each
other, starting from linear algebra, moving to the definition of gradients for
n-dimensional objects, and finally how we can optimize functions by exploit-
ing such gradients. A self-contained overview of probability theory is given in
Appendix A, with a focus on the maximum likelihood principle. This chapter
is full of content and definitions: bear with me for a while!

2.1 Linear algebra

We recall here some basic concepts from linear algebra that will be useful in
the following (and to agree on a shared notation). Most of the book revolves
around the idea of a tensor.

Definition D.2.1 (Tensors) A tensor X is an n-dimensional array of ele-
ments of the same type. For the following, we use X ∼ (s1, s2, . . . , sn) to quickly
denote the shape of the tensor.

For n = 0 we obtain scalars (single values), while we have vectors for n = 1,

13



14 Linear algebra

matrices for n = 2, and higher-dimensional arrays otherwise. Recall that we
use lowercase x for scalars, lowercase bold x for vectors, uppercase bold X for
matrices. Tensors in the sense described here are fundamental in deep learning
because they are well suited to a massively-parallel implementation, such as
using GPUs or more specialized hardware (e.g., TPUs, IPUs).

A tensor is described by the type of its elements and its shape. Most of our
discussion will be centered around tensors of floating-point values (the specific
format of which we will consider later on), but they can also be defined for
integers (e.g., in classification) or for strings (e.g., for text). Tensors can be
indexed to get slices (subsets) of their values, and most conventions from
NumPy indexing1 apply. For simple equations we use pedices: for example, for
a 3-dimensional tensor X ∼ (a, b, c) we can write X i to denote a slice of size
(b, c) or X i jk for a single scalar. We use commas for more complex expressions,
such as X i,:, j:k to denote a slice of size (b, k − j). When necessary to avoid
clutter, we use a light-gray notation:

[X ]i jk

to visually split the indexing part from the rest, where the argument of [•] can
also be an expression.

2.1.1 Common vector operations

We are mostly concerned with models that can be written as composition of
differentiable operations. In fact, the majority of our models will consist of ba-
sic compositions of sums, multiplications, and some additional non-linearities
such as the exponential exp(x), sines and cosines, and square roots.

Vectors x ∼ (d) are examples of 1-dimensional tensors. Linear algebra books
are concerned with distinguishing between column vectors x and row vectors
x⊤, and we will try to adhere to this convention as much as possible. In code
this is trickier, because row and column vectors correspond to 2-dimensional
tensors of shape (d, 1) or (1, d), which are different from 1-dimensional tensors
of shape (d). This is important to keep in mind because most frameworks
implement broadcasting rules2 inspired by NumPy, giving rise to non-intuitive

1https://numpy.org/doc/stable/user/basics.indexing.html
2See: https://numpy.org/doc/stable/user/basics.broadcasting.html. In a nut-
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Chapter 2: Mathematical preliminaries 15

import torch
x = torch.randn((4, 1)) # "Row" vector
y = torch.randn((4,)) # 1-dimensional tensor
print((x + y).shape)
# [Out]: (4,4) (because of broadcasting!)

Box C.2.1: An example of (probably incorrect) broadcasting, resulting in a matrix
output from an elementwise operation on two vectors due to their shapes. The same
result can be obtained in practically any framework (NumPy, TensorFlow, JAX, ...).

behaviors. See Box C.2.1 for an example of a very common error arising in
implicit broadcasting of tensors’ shapes.

Vectors possess their own algebra (which we call a vector space), in the sense
that any two vectors x and y of the same shape can be linearly combined z =
ax+ by to provide a third vector:

zi = ax i + b yi

If we understand a vector as a point in d-dimensional Euclidean space, the sum
is interpreted by forming a parallelogram, while the distance of a vector from
the origin is given by the Euclidean (ℓ2) norm:

∥x∥=
√

√

∑

i

x2
i

The squared norm ∥x∥2 is of particular interest, as it corresponds to the sum of
the elements squared. The fundamental vector operation we are interested in
is the inner product (or dot product), which is given by multiplying the two
vectors element-wise, and summing the resulting values.

Definition D.2.2 (Inner product) The inner product between two vectors
x,y∼ (d) is given by:

〈x,y〉= x⊤y=
∑

i

x i yi (E.2.1)

shell, broadcasting aligns the tensors’ shape from the right, and repeats a tensor whenever
possible to match the two shapes.

15



16 Linear algebra

The notation 〈·, ·〉 is common in physics, and we use it sometimes for clarity.
Importantly, the dot product between two vectors is a scalar. For example, if
x= [0.1,0,−0.3] and y= [−4.0,0.05, 0.1]:

〈x,y〉= −0.4+ 0− 0.03= −0.43

A simple geometric interpretation of the dot product is given by its relation
with the angle α between the two vectors:

x⊤y= ∥x∥∥y∥ cos(α) (E.2.2)

Hence, for two normalized vectors such that ∥·∥= 1, the dot product is equiv-
alent to the cosine of their angle, in which case we call the dot product the
cosine similarity. The cosine similarity cos(α) oscillates between 1 (two vec-
tors pointing in the same direction) and −1 (two vectors pointing in opposite
directions), with the special case of 〈x,y〉= 0 giving rise to orthogonal vectors
pointing in perpendicular directions. Looking at this from another direction,
for two normalized vectors (having unitary norm), if we fix x, then:

y∗ = argmax 〈x,y〉= x (E.2.3)

where arg max denotes the operation of finding the value of x corresponding
to the highest possible value of its argument. From (E.2.3) we see that, to
maximize the dot product, the second vector must equal the first one. This is
important, because in the following chapters x will represent an input, while
w will represent (adaptable) parameters, so that the dot product is maximized
whenever x ‘resonates’ with w (template matching).

We close with two additional observations that will be useful. First, we can
write the sum of the elements of a vector as its dot product with a vector 1
composed entirely of ones:

〈x,1〉=
d
∑

i=1

x i

Second, the distance between two vectors can also be written in terms of their
dot products:

∥x− y∥2 = 〈x,x〉+ 〈y,y〉 − 2〈x,y〉

The case y = 0 gives us ∥x∥2 = 〈x,x〉. Both equations can be useful when

16



Chapter 2: Mathematical preliminaries 17

writing equations or in the code.

2.1.2 Common matrix operations

In the 2-dimensional case we have matrices:

X=





X11 · · · X1d
...

. . .
...

Xn1 · · · Xnd



∼ (n, d)

In this case we can talk about a matrix with n rows and d columns. Of particular
importance for the following, a matrix can be understood as a stack of n vectors
(x1,x2, . . . ,xn), where the stack is organized in a row-wise fashion:

X=





x⊤1
...

x⊤n





We say that X represents a batch of data vectors. As we will see, it is customary
to define models (both mathematically and in code) to work on batched data
of this kind. A fundamental operation for matrices is multiplication:

Definition D.2.3 (Matrix multiplication) Given two matrices X∼(a,b) and
Y ∼ (b, c), matrix multiplication Z = XY, with Z ∼ (a, c) is defined element-
wise as:

Zi j = 〈Xi,Y
⊤
j 〉 (E.2.4)

i.e., the element (i, j) of the product is the dot product between the i-th row
of X and the j-th column of Y.

As a special case, if the second term is a vector we have a matrix-vector product:

z=Wx (E.2.5)

If we interpret X as a batch of vectors, matrix multiplication XW is a simple
vectorized way of computing n dot products as in (E.2.5), one for each row
of X, with a single linear algebra operation. As another example, matrix mul-
tiplication of a matrix by its transpose, XX⊤ ∼ (n, n), is a vectorized way to

17



18 Linear algebra

compute all possible dot products of pairs of rows of X simultaneously.

We close by mentioning a few additional operations on matrices that will be
important.

Definition D.2.4 (Hadamard multiplication) The Hadamard multiplica-
tion of two matrices of the same shape is done element-wise:

[X⊙ Y]i j = X i jYi j

While Hadamard multiplication does not have all the interesting algebraic
properties of standard matrix multiplication, it is commonly used in neural net-
work models for performing masking operations (e.g., setting some elements
to zero) or scaling operations. Multiplicative interactions of this kind have also
become popular in some recent families of models.

On the definition of matrix multiplication

Why is matrix multiplication defined as (E.2.4) and not as Hadamard
multiplication? Consider a vector x and some generic function f defined
on it. The function is said to be linear if f (αx1+βx2) = α f (x1)+β f (x2).
Any such function can be represented as a matrix A (this can be seen by
extending the two vectors in a basis representation). Then, the matrix-
vector product Ax corresponds to function application, f (x) = Ax, and
matrix multiplication AB corresponds to function composition f ◦g, where
( f ◦ g)(x) = f (g(x)) and g(x) = Bx.

Sometimes we write expressions such as exp(X), which are to be interpreted
as element-wise applications of the operation:

[exp(X)]i j = exp(X i j) (E.2.6)

By comparison, “true” matrix exponentiation is defined as for a squared matrix
as:

mat-exp(X) =
∞
∑

k=0

1
k!

Xk (E.2.7)

18



Chapter 2: Mathematical preliminaries 19

X = torch.randn((5, 5))
X = torch.exp(X) # Element-wise exponential
X = torch.linalg.matrix_exp(X) # Matrix exponential

Box C.2.2: Difference between element-wise exponential of a matrix and real matrix
exponential. Specialized linear algebra operations are generally encapsulated in their
own sub-package.

Importantly, (E.2.6) can be defined for tensors of any shape, while (E.2.7) is
only valid for (squared) matrices. This is why all frameworks, like PyTorch,
have specialized modules that collect all matrix-specific operations, such as
inverses and determinants. See Box C.2.2 for an example.

Finally, we can write reduction operations (sum, mean, ...) across axes without
specifying lower and upper indices, in which case we assume that the summa-
tion runs along the full axis:

∑

i

Xi =
n
∑

i=1

Xi

In PyTorch and other frameworks, reduction operations correspond to methods
having an axis argument:

r = X.sum(axis=1)

Computational complexity and matrix multiplication

I will use matrix multiplication to introduce the topic of complexity of an oper-
ation. Looking at (E.2.4), we see that computing the matrix Z∼ (a, c) from the
input arguments X∼ (a, b) and Y∼ (b, c) requires ac inner products of dimen-
sion b if we directly apply the definition (what we call the time complexity),
while the memory requirement for a sequential implementation is simply the
size of the output matrix (what we call instead the space complexity).

To abstract away from the specific hardware details, computer science focuses
on the so-called big-O notation, from the German ordnung (which stands for
order of approximation). A function f (x) is said to be O (g(x)), where we
assume both inputs and outputs are non-negative, if we can find a constant c
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20 Linear algebra

and a value x0 such that:

f (x)≤ cg(x) for any x ≥ x0 (E.2.8)

meaning that as soon as x grows sufficiently large, we can ignore all factors in
our analysis outside of g(x). This is called an asymptotic analysis. Hence, we
can say that a naive implementation of matrix multiplication is O (abc), grow-
ing linearly with respect to all three input parameters. For two square matrices
of size (n, n) we say matrix multiplication is cubic in the input dimension.

Reasoning in terms of asymptotic complexity is important (and elegant), but
choosing an algorithm only in terms of big-O complexity does not necessarily
translate to practical performance gains, which depends on many details such
as what hardware is used, what parallelism is supported, and so on.3 As an
example, it is known that the best asymptotic algorithm for multiplying two
square matrices of size (n, n) scales as O (nc) for a constant c < 2.4 [CW82],
which is much better than the cubic O (n3) requirement of a naive implemen-
tation. However, these algorithms are much harder to parallelize efficiently on
highly-parallel hardware such as GPUs, making them uncommon in practice.

Note that from the point of view of asymptotic complexity, having access to a
parallel environment with k processors has no impact, since it can only pro-
vide (at best) a constant 1

k speedup over a non-parallel implementation. In
addition, asymptotic complexity does not take into consideration the time it
takes to move data from one location to the other, which can become the ma-
jor bottleneck in many situations.4 In these cases, we say the implementation
is memory-bound as opposed to compute-bound. Practically, this can only be
checked by running a profiler over the code. We will see that analyzing the
complexity of an algorithm is far from trivial due to the interplay of asymp-
totic complexity and observed complexity.

3When you call a specific primitive in a linear algebra framework, such as matrix multipli-
cation A @ B in PyTorch, the specific low-level implementation that is executed (the kernel)
depends on the run-time hardware, through a process known as dispatching. Hence, the
same code can run via a GPU kernel, a CPU kernel, a TPU kernel, etc. This is made even more
complex by compilers such as XLA (https://openxla.org/xla), which can optimize code
by fusing and optimizing operations with a specific target hardware in mind.

4https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-

background/index.html
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X = torch.randn((4, 5, 2))
Y = torch.randn((4, 2, 3))
(torch.matmul(X, Y)).shape # Or X @ Y
# [Out]: (4, 5, 3)

Box C.2.3: BMM in PyTorch is equivalent to standard matrix multiplication. Practically
every operation is implemented to run on generically batched inputs.

2.1.3 Higher-order tensor operations

Vectors and matrices are interesting because they allow us to define a large
number of operations which are undefined or complex in higher dimensions
(e.g., matrix exponentials, matrix multiplication, determinants, ...). When
moving to higher dimensions, most of the operations we are interested into
are either batched variants of matrix operations, or specific combinations of
matrix operations and reduction operations.

As an example of the former, consider two tensors X ∼ (n, a, b) and Y ∼
(n, b, c). Batched matrix multiplication (BMM) is defined as:

[BMM(X , Y )]i = XiYi ∼ (n, a, c) (E.2.9)

Operations in most frameworks operate transparently on batched versions of
their arguments, which are assumed like in this case to be leading dimensions
(the first dimensions). For example, batched matrix multiplication in PyTorch
is the same as standard matrix multiplication, see Box C.2.3.

As an example of a reduction operation, consider two tensors X , Y ∼ (a, b, c).
A generalized version of the dot product (GDT) can be written as:

GDT(X , Y ) =
∑

i, j,k

[X ⊙ Y ]i jk

which is simply a dot product over the ‘flattened’ versions of its inputs. This
brief overview covers most of the tensor operations we will use in the rest of
the book, with additional material introduced when necessary.
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22 Linear algebra

# Batched matrix multiply
M = torch.einsum('ijz,izk->ijk', A, B)
# Generalized dot product
M = torch.einsum('ijk,ijk->', A, B)

Box C.2.4: Examples of using einsum in PyTorch.

2.1.4 Einstein’s notation

This is an optional section that covers einsum,5 a set of conventions allowing
the user to specify most tensor operations with a unified syntax. Let us consider
again the two examples shown before, writing down explicitly all the axes:

Batched matrix multiply: Mi jk =
∑

z

Ai jzBizk (E.2.10)

Generalized dot product: M =
∑

i

∑

j

∑

k

X i jkYi jk (E.2.11)

In line with Einstein’s notation,6 we can simplify the two equations by remov-
ing the sums, under the convention that any index appearing on the right but
not on the left is summed over:

Mi jk = Ai jzBizk ≜
∑

z

Ai jzBizk (E.2.12)

M = X i jkYi jk ≜
∑

i

∑

j

∑

k

X i jkYi jk (E.2.13)

Then, we can condense the two definitions by isolating the indices in a unique
string (where the operands are now on the left):

• ‘ijz,izk→ijk’ (batched matrix multiply);

• ‘ijk,ijk→’ (generalized dot product).

There is a direct one-to-one correspondence between the definitions in (E.2.12)-
(E.2.13) and their simplified string definition. This is implemented in most
frameworks in the einsum operation, see Box C.2.4.

5https://numpy.org/doc/stable/reference/generated/numpy.einsum.html.
6https://en.wikipedia.org/wiki/Einstein_notation.
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M = jax.numpy.einsum('ijz,izk->ijk', A, B)

Box C.2.5: Example of using einsum in JAX - compare with Box C.2.4.

The advantage of this notation is that we do not need to remember the API
of a framework to implement a given operation; and translating from one
framework to the other is transparent because the einsum syntax is equiva-
lent. For example, PyTorch has several matrix multiplication methods, includ-
ing matmul and bmm, with different broadcasting rules and shape constraints,
and einsum provides a uniform syntax for all of them. In addition, the ein-
sum definition of our batched matrix multiplication is identical to, e.g., the
definition in JAX, see Box C.2.5.

Working with transposed axes is also simple. For example, for A ∼ (n, a, b)
and B ∼ (n, c, b), a batched multiplication of [A]i times [B⊤]i is obtained by
switching the corresponding axes in the einsum definition:

M = torch.einsum('ijz,ikz->ijk', A, B)

Because of these reasons, einsum and its generalizations (like the popular
einops7 package) have gained a wide popularity recently.

2.2 Gradients and Jacobians

As the name differentiable implies, gradients play a pivotal tool in the book,
by allowing us to optimize our models through semi-automatic mechanisms
deriving from gradient descent (discussed in the next section). To this end, we
recall here some basic definitions and concepts concerning differentiation of
multi-valued functions. We focus on properties that will be essential for later,
partially at the expense of mathematical precision.

2.2.1 Derivatives of scalar functions

Starting from a simple function y = f (x) with a scalar input and a scalar
output, its derivative is defined as follows.

7http://einops.rocks
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24 Gradients and Jacobians

Definition D.2.5 (Derivative) The derivative of f (x) is defined as:

f ′(x) = lim
h→0

f (x + h)− f (x)
h

(E.2.14)

We will also use ∂ f (x) and ∂
∂x

f (x) to denote the same quantity.

We use a variety of notation to denote scalar derivatives: ∂ will denote gener-
ically derivatives and gradients of any dimension (vectors, matrices); ∂x high-
lights the input argument we are differentiating with respect to (when needed);
while f ′(x) is specific to scalar functions and it is sometimes called Lagrange’s
notation.

We are not concerned here about the existence of the derivative of the function
(which is not guaranteed everywhere even for a continuous function), which
we assume as given. We will only touch upon this point when discussing deriva-
tives of non-smooth functions, such as f (x) = |x | in 0 later on in Chapter 6.

Derivatives of simple functions can be obtained by direct application of the
definition, e.g., the derivative of a polynomial should be familiar:

∂ x p = lim
h→0

(x + h)p − x p

h

= lim
h→0

1
h

�

px p−1h+
p(p− 1)

2
x p−2h2 + . . .+ hp

�

= px p−1 + lim
h→0

�

p(p− 1)
2

x p−2h2 + . . .+ hp−1
�

= px p−1

By the binomial theorem: x p +
�p

1

�

x p−1h+ . . .+
�p

p

�

hp

Independent from h

where
�n

k

�

= n!
k!(n−k)! denotes the binomial coefficient (a simpler proof can also

be obtained by induction over p).

Geometrically, the derivative can be understood as the slope of the tangent
passing through a point, or equivalently as the best first-order approximation
of the function itself in that point, as shown in Fig. F.2.1. This is a fundamental
point of view, because the slope of the line tells us how the function is evolving
in a close neighborhood: for a positive slope, the function is increasing on the

24



Chapter 2: Mathematical preliminaries 25

Figure F.2.1: Plot of the func-
tion f (x) = x2 − 1.5x, shown
along with the derivatives on
two separate points.
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right and decreasing on the left (again, for a sufficiently small interval), while
for a negative slope the opposite is true. As we will see, this insight extends to
vector-valued functions.

We recall some important properties of derivatives that also extend to the
multi-dimensional case:

• Linearity: the derivative is linear, so the derivative of a sum is the sum
of derivatives:

∂
�

f (x) + g(x)
�

= f ′(x) + g ′(x) .

• Product rule:

∂
�

f (x)g(x)
�

= f ′(x)g(x) + f (x)g ′(x) ,

• Chain rule: the derivative of function composition is given by multiply-
ing the corresponding derivatives:

∂
�

f (g(x))
�

= f ′(g(x))g ′(x) (E.2.15)

2.2.2 Gradients and directional derivatives

Consider now a function y = f (x) taking a vector x ∼ (d) as input. Talking
about infinitesimal perturbations here does not make sense unless we specify
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26 Gradients and Jacobians

the direction of this perturbation (while in the scalar case we only had “left”
and “right”, in this case we have infinite possible directions in the Euclidean
space). In the simplest case, we can consider moving along the i-th axis, keep-
ing all other values fixed:

∂x i
f (x) =

∂ y
∂ x i

= lim
h→0

f (x+ hei)− f (x)
h

, (E.2.16)

where ei ∼ (d) is the i-th basis vector (the i-th row of the identity matrix):

[ei] j =

¨

1 if i = j
0 otherwise

(E.2.17)

(E.2.16) is called a partial derivative. Stacking all partial derivatives together
gives us a d-dimensional vector called the gradient of the function.

Definition D.2.6 (Gradient) The gradient of a function y = f (x) is given
by:

∇ f (x) = ∂ f (x) =





∂x1
f (x)
...

∂xd
f (x)



 (E.2.18)

Because gradients are fundamental, we use the special notation ∇ f (x) to dis-
tinguish them. What about displacements in a general direction v? In this case
we obtain the directional derivative:

Dv f (x) = lim
h→0

f (x+ hv)− f (x)
h

, (E.2.19)

Movement in space can be decomposed by considering individual displace-
ments along each axis, hence it is easy to prove that the directional derivative
is given by the dot product of the gradient with the displacement vector v:

Dv f (x) = 〈∇ f (x),v〉=
∑

i

∂x i
f (x)vi (E.2.20)

Displacement on the i-th axis

Hence, knowing how to compute the gradient of a function is enough to com-
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pute all possible directional derivatives.

2.2.3 Jacobians

Let us now consider the generic case of a function y= f (x) with a vector input
x ∼ (d) as before, and this time a vector output y ∼ (o). As we will see, this
is the most general case we need to consider. Because we have more than one
output, we can compute a gradient for each of them, and their stack provides
an (o, d) matrix we call the Jacobian of f .

Definition D.2.7 (Jacobian) The Jacobian matrix of a function y = f (x),
x∼ (d), y∼ (o) is given by:

∂ f (x) =







∂ y1
∂ x1

. . . ∂ y1
∂ xd

... . . . ...
∂ yo
∂ x1

. . . ∂ yo
∂ xd






∼ (o, d) (E.2.21)

We recover the gradient for o = 1, and the standard derivative for d = o = 1.
Jacobians inherit all the properties of derivatives: importantly, the Jacobian of
a composition of functions is now a matrix multiplication of the corresponding
individual Jacobians:

∂ [ f (g(x))] = [∂ f (·)]∂ g(x) (E.2.22)

where the first derivative is evaluated in g(x)∼ (h). See [PP+08, Chapter 2] for
numerical examples of worked out gradients and Jacobians. Like in the scalar
case, gradients and Jacobians can be understood as linear functions tangent to
a specific point. In particular, the gradient is the best “first-order approxima-
tion” in the following sense. For a point x0, the best linear approximation in
an infinitesimal neighborhood of f (x0) is given by:

ef (x) = f (x0) + 〈 ∂ f (x0) , x− x0 〉

Slope of the line

Displacement from x0

This is called Taylor’s theorem. See Box C.2.6 and Fig. F.2.2 for a visualization
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28 Gradients and Jacobians

# Generic function
f = lambda x: x**2-1.5*x

# Derivative (computed manually for now)
df = lambda x: 2*x-1.5

# Linearization at 0.5
x=0.5
f_linearized = lambda h: f(x) + df(x)*(h-x)

# Comparing the approximation to the real derivative
print(f(x + 0.01)) # [Out]: -0.5049
print(f_linearized(x + 0.01)) # [Out]: -0.5050

Box C.2.6: Example of computing a first-order approximation (scalar case). The result
is plotted in Fig. F.2.2.

in the scalar case f (x) = x2 − 1.5x .

On the dimensionality of the Jacobians

We close with a pedantic note on dimensionality that will be useful in the
following. Consider the following function:

y=Wx

When viewed as a function of x, the derivative is, as before, an (o, d) matrix,
and it can be shown that:

∂x [Wx] =W

When viewed as a function of W, instead, the input is itself an (o, d) matrix,
and the “Jacobian” in this case has shape (o, o, d) (see the box on the following
page). However, we can always imagine an identical (isomorphic) function
taking as input the vectorized version of W, vect(W)∼ (od), in which case the
Jacobian will be a matrix of shape (o, od).

This quick example clarifies what we mean by our statement that working with
vector inputs and outputs “is enough” from a notational point of view. How-
ever, it will be important to keep this point in mind in Chapter 6, when we
will use matrix Jacobians for simplicity of notation (in particular, to avoid the
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Figure F.2.2: The function
f (x) = x2 − 1.5x and its first-
order approximation shown in
0.5.
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proliferation of indices), but the sizes of these Jacobians may “hide” inside the
actual shapes of the inputs and the outputs, most importantly the batch sizes.
Importantly, we will see in Chapter 6 that explicit computation of Jacobians
can be avoided in practice by considering the so-called vector-Jacobian prod-
ucts. This can also be formalized by viewing Jacobians as abstract linear maps
- see [BR24] for a formal overview of this topic.

Working out the Jacobian

To compute the Jacobian ∂WWx, we can rewrite the expression element-
wise as:

yi =
∑

j

Wi j x j

from which we immediately find that:

∂ yi

∂Wi j
= x j (E.2.23)

Note that to materialize the Jacobian explicitly (store it in memory), we
would need a lot of repeated values. As we will see in Chapter 6, this can
be avoided because, in practice, we only care about the application of the
Jacobian on another tensor.
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30 Numerical optimization and gradient descent

2.3 Numerical optimization and gradient descent

To understand the usefulness of having access to gradients, consider the prob-
lem of minimizing a generic function f (x), with x∼ (d):

x∗ = arg min
x

f (x) (E.2.24)

where, similarly to arg max, arg min f (x) denotes the operation of finding the
value of x corresponding to the lowest possible value of f (x). We assume
the function has a single output (single-objective optimization), and that the
domain over which we are optimizing x is unconstrained.

In the rest of the book x will encode the parameters of our model, and f will
describe the performance of the model itself on our data, a setup called su-
pervised learning that we introduce in the next chapter. We can consider
minimizing instead of maximizing with no loss of generality, since minimizing
f (x) is equivalent to maximizing − f (x) and vice versa (to visualize this, think
of a function in 1D and rotate it across the y-axis, picturing what happens to
its low points).

In very rare cases, we may be able to express the solution in closed-form (we
will see one example in the context of least-squares optimization in Section
4.1.3). In general, however, we are forced to resort to iterative procedures.
Suppose we start from a random guess x0 and that, for every iteration, we take
a step, that we decompose in terms of its magnitude ηt (the length of the step)
and the direction pt:

xt = xt−1 + ηtpt (E.2.25)

Guess at iteration t

Displacement at iteration t

We call ηt the step size (or, in machine learning terminology, the learning
rate, for reasons that will become clear in the next chapter). A direction pt

for which there exists an ηt such that f (xt) ≤ f (xt−1) is called a descent
direction. If we can select a descent direction for every iteration, and if we
are careful in the choice of step size, the iterative algorithm in (E.2.25) will
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converge to a minimum in a sense to be described shortly.

For differentiable functions, we can precisely quantify all descent directions by
using the directional derivative from (E.2.19), as they can be defined as the
directions inducing a negative change with respect to our previous guess xt−1:

pt is a descent direction ⇒ Dpt
f (xt−1)≤ 0

Using what we learned in Section 2.2 and the definition of the dot product in
terms of cosine similarity from (E.2.2) we get:

Dpt
f (xt−1) = 〈∇ f (xt−1),pt〉= ∥∇ f (xt−1)∥∥pt∥ cos(α)

where α is the angle between pt and ∇ f (xt−1). Considering the expression
on the right, the first term is a constant with respect to pt . Because we have
assumed pt only encodes the direction of movement, we can also safely restrict
it to ∥pt∥ = 1, rendering the second term another constant. Hence, by the
properties of the cosine we deduce that any pt whose angle is betweenπ/2 and
3π/2 with ∇ f (xt−1) is a descent direction. Among these, the direction pt =
−∇ f (xt−1) (with an angle of π) has the lowest possible directional derivative,
and we refer to it as the steepest descent direction.

Putting together this insight with our previous iterative procedure gives us
an algorithm to minimize any differentiable function, that we call (steepest)
gradient descent.

Definition D.2.8 ((Steepest) Gradient descent) Given a differentiable func-
tion f (x), a starting point x0, and a step size sequence ηt , gradient descent
proceeds as:

xt = xt−1 −ηt∇ f (xt−1) (E.2.26)

We will not be concerned with the problem of finding an appropriate step size,
which we will just assume “small enough” so that the gradient descent itera-
tion provides a reduction in f . In the next section we focus on what points
are obtained by running gradient descent from a generic initialization. Note
that gradient descent is as efficient as the procedure we use to compute the
gradient: we introduce a general efficient algorithm to this end in Chapter 6.
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32 Numerical optimization and gradient descent

2.3.1 Convergence of gradient descent

When discussing the convergence of gradient descent, we need to clarify what
we mean by “a minimizer” of a function. If you do not care about convergence
and you trust gradient descent to go well, proceed with no hesitation to the
next section.

Definition D.2.9 (Minimum) A local minimum of f (x) is a point x+ such
that the following is true for some ϵ > 0:

f (x+)≤ f (x) ∀x : ∥x− x+∥< ϵ

Ball of size ϵ centered in x+

In words, the value of f (x+) is a minimum if we consider a sufficiently small
neighborhood of x+. Intuitively, in such a point the slope of the tangent will
be 0, and the gradient everywhere else in the neighborhood of x+ will point
upwards. We can formalize the first idea by the concept of stationary points.

Definition D.2.10 (Stationary points) A stationary point of f (x) is a point
x+ such that ∇ f (x+) = 0.

Stationary points are not limited to minima: they can be maxima (the minima
of − f (x)) or saddle points, which are inflexion points where the curvature of
the function is changing (see Fig. F.2.3 for an example). In general, without
any constraint on f , gradient descent can only be proven to converge to a
generic stationary point depending on its initialization.

Can we do better? Picture a parabola: in this case, the function does not have
any saddle points, and it only has a single minimum. This minimum is also
special, in the sense that the function in that point attains its lowest possible
value across the entire domain: we say this is a global minimum.

Definition D.2.11 (Global minimum) A global minimum of f (x) is a point
x∗ such that f (x∗)≤ f (x) for any possible input x.

Intuitively, gradient descent will converge to this global minimum if run on
the parabola (from any possible initialization) because all gradients will point
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Figure F.2.3: Simple exam-
ple of a saddle point (try visu-
alizing the tangent line in that
point to see it is indeed station-
ary).
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Saddle point
(neither minimum
nor maximum)

towards it. We can generalize this idea with the concept of convexity of a
function. There are many possible definitions of convexity, we choose the one
below for simplicity of exposition.

Definition D.2.12 (Convex function) A function f (x) is convex if, for any
two points x1 and x2 and α ∈ [0,1] we have:

f ( αx1 + (1−α)x2 )≤ α f (x1) + (1−α) f (x2) (E.2.27)

Line segment from x1 to x2

The left-hand side in (E.2.27) is the value of f on any point inside the interval
ranging from x1 to x2, while the right-hand side is the corresponding value
on a line connecting f (x1) and f (x2). If the function is always below the line
joining any two points, it is convex (as an example, a parabola is convex).

Convexity qualifies the simplicity of optimizing the function, in the following
sense [JK+17]:

1. For a generic non-convex function, gradient descent converges to a sta-
tionary point. Nothing more can be said unless we look at higher-order
derivatives (derivatives of the derivatives).

2. For a convex function, gradient descent will converge to a global mini-
mum, irrespective of initialization.
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34 Numerical optimization and gradient descent

3. If the inequality in (E.2.27) is satisfied in a strict way (strict convexity),
the global minimizer will also be unique.

This is a hard property: to find a global minimum in a non-convex problem
with gradient descent, the only solution is to run the optimizer infinite times
from any possible initialization, turning it into an NP-hard task [JK+17].

This discussion has a strong historical significance. As we will see in Chapter
5, any non-trivial model is non-convex, meaning that its optimization problem
may have several stationary points. This is in contrast to alternative algorithms
for supervised learning, such as support vector machines, which maintain non-
linearity while allowing for convex optimization. Interestingly, complex differ-
entiable models seem to work well even in the face of such restriction, in the
sense that their optimization, when started from a reasonable initialization,
converge to points with good empirical performance.

2.3.2 Accelerating gradient descent

The negative gradient describes the direction of steepest descent, but only in
an infinitesimally small neighborhood of the point. As we will see in Chap-
ter 9 (where we introduce stochastic optimization), these directions can be
extremely noisy, especially when dealing with large models. A variety of tech-
niques have been developed to accelerate convergence of the optimization al-
gorithm by selecting better descent directions. For computational reasons, we
are especially interested in methods that do not require higher-order deriva-
tives (e.g., the Hessian), or multiple calls to the function.

We describe here one such technique, momentum, and we refer to [ZLLS23,
Chapter 12], for a broader introduction.8 If you picture gradient descent as a
ball “rolling down a hill”, the movement is relatively erratic, because each gra-
dient can point in a completely different direction (in fact, for a perfect choice
of step size, any two gradients in subsequent iterations will be orthogonal). We
can smooth this behavior by introducing a “momentum” term that conserves
some direction from the previous gradient iteration:

8See also this 2016 blog post by S. Ruder: https://www.ruder.io/optimizing-

gradient-descent/.
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Figure F.2.4: First iterations
of standard GD and GD with
momentum when minimizing
f (x) = x sin(2x) starting from
x = 1+ ϵ, with λ= 0.3.
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gt = − ηt∇ f (xt) +λgt−1
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Normal gradient descent iteration

Additional momentum term

where we initialize g0 = 0. See Fig. F.2.4 for an example.

The coefficient λ determines how much the previous term is dampened. In
fact, unrolling two terms:

gt = −ηt∇ f (xt) +λ(−ηt∇ f (xt−1) +λgt−2)

= −ηt∇ f (xt)−ληt∇ f (xt−1) +λ
2gt−2

Generalizing, the iteration at time t−n gets dampened by a factor λn. Momen-
tum can be shown to accelerate training by smoothing the optimization path
[SMDH13]. Another common technique is adapting the step size for each pa-
rameter based on the gradients’ magnitude [ZLLS23]. A common optimization
algorithm combining several of these ideas is Adam [KB14]. One advantage
of Adam is that it is found to be relatively robust to the choice of its hyper-
parameters,9 with the default choice in most frameworks being a good starting

9An hyper-parameter is a parameter which is selected by the user, as opposed to being learnt
by gradient descent.
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36 Numerical optimization and gradient descent

point in the majority of cases.

One disadvantage of using accelerated optimization algorithms can be increased
storage requirements: for example, momentum requires us to store the previ-
ous gradient iteration in memory, doubling the space needed by the optimiza-
tion algorithm (although in most cases, the memory required to compute the
gradient is the most influential factor in terms of memory, as we will see in
Section 6.3).
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3 | Datasets and losses

About this chapter

This chapter formalizes the supervised learning scenario. We introduce
the concepts of datasets, loss functions, and empirical risk minimization,
stressing the basic assumptions made in supervised learning. We close by
providing a probabilistic formulation of supervised learning built on the
notion of maximum likelihood. This is a short chapter that serves as the
backbone for the rest of the book.

3.1 What is a dataset?

We consider a scenario in which manually coding a certain function is unfeasi-
ble (e.g., recognizing objects from real-world images), but gathering examples
of the desired behaviour is sufficiently easy. Examples of this abound, ranging
from speech recognition to robot navigation. We formalise this idea with the
following definition.

Definition D.3.1 (Dataset) A supervised dataset Sn of size n is a set of n
pairs Sn = {(x i, yi)}

n
i=1, where each (x i, yi) is an example of an input-output

relationship we want to model. We further assume that each example is an
identically and independently distributed (i.i.d.) draw from some unknown
(and unknowable) probability distribution p(x , y).

See Appendix A if upon reading the definition you want to brush up on prob-
ability theory. The last assumption appears technical, but it is there to ensure
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38 What is a dataset?

that the relationship we are trying to model is meaningful. In particular, sam-
ples being identically distributed means that we are trying to approximate
something which is sufficiently stable and unchanging through time. As a rep-
resentative example, consider the task of gathering a dataset to recognise car
models from photos. This assumption will be satisfied if we collect images
over a short time span, but it will be invalid if collecting images from the last
few decades, since car models will have changed over time. In the latter case,
training and deploying a model on this dataset will fail as it will be unable to
recognise new models or will have sub-optimal performance when used.

Similarly, samples being independently distributed means that our dataset
has no bias in its collection, and it is sufficiently representative of the entire
distribution. Going back to the previous example, gathering images close to
a Tesla dealership will be invalid, since we will collect an overabundance of
images of a certain type while loosing on images of other makers and mod-
els. Note that the validity of these assumptions depends on the context: a car
dataset collected in Italy may be valid when deploying our model in Rome or
Milan, while it may invalid when deploying our model in Tokyo or in Taiwan.
The i.i.d. assumption should always be checked carefully to ensure we are ap-
plying our supervised learning tools to a valid scenario. Interestingly, modern
LLMs are trained on such large distributions of data that even understanding
what tasks are truly in-distribution against what is out-of-distribution (and how
much the models are able to generalize) becomes blurred [YCC+24].

3.1.1 Variants of supervised learning

There exists many variations on the standard supervised learning scenario, al-
though most successful applications make use of supervised learning in some
form or another. For example, some datasets may not have available targets
yi, in which case we may talk about unsupervised learning. Typical applica-
tions of unsupervised learning are clustering algorithms, in which we want to
aggregate our input data into clusters such that points in a cluster are similar
and points between clusters are dissimilar [HTF09]. As another example, in a
retrieval system we may want to search a large database for the top-k most
similar elements to a user-given query.

When dealing with complex data such as images, this is non-trivial because
distances on images are ill-defined if we operate on pixels (i.e., even small per-
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"Cat"
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"Dog"

"Pre-trained" model

"Embedding" space
Objects in this space act as standard vectors: we can sum

them, compute distances, rank them, etc.

Figure F.3.1: Differentiable models process data by transforming it sequentially via
linear algebra operations. In many cases, after we optimize these programs, the internal
representations of the input data of the model (what we call a pre-trained model) have
geometric properties: for example, semantically similar images are projected to points
that are close in this “latent” space. Transforming data from a non-metric space (original
input images) to a metric space (bottom right) is called embedding the data.

turbations can modify millions of pixels). However, assume we have available
some (differentiable) model that we have already optimized for some other
task which we assume sufficiently generic, e.g., image classification. We call it
a pre-trained model. As we will see, the internal states of this model can be
interpreted as vectors in a high-dimensional space. In many cases, these vec-
tors are shown to have useful geometrical properties, in the sense that objects
that are semantically similar are sent (embedded) into points that are close
in these representations. Hence, we can use these latent representations with
standard clustering models, such as Gaussian mixture models [HHWW14]. See
Fig. F.3.1 for a high-level overview of this idea.

What if we do not have access to a pre-trained model? A common variation of
unsupervised learning is called self-supervised learning (SSL, [ZJM+21]). The
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"Is this a cat?"

Pre-trained model "Is this a cat?"

Pre-trained model

"This is a cat."

"This is a racoon."

Fine-tuned model

Pre-trained model

Fine-tuning

Zero-shot learning Few-shot prompting Fine-tuning

Dataset

"cat""racoon"

"Is this a cat?"

Figure F.3.2: Three ways of using trained models. Zero-shot: a question is directly
given to the model. This can be achieved with generative language models (introduced in
Chapter 8). Few-shot prompting is similar, but a few examples are provided as input.
Both techniques can be employed only if the underlying model shows a large amount of
generalization capabilities. Fine-tuning: the model is optimized via gradient descent on
a small dataset of examples. This proceeds similarly to training the model from scratch.

aim of SSL is to automatically find some supervised objective from a generic
unsupervised dataset, in order to optimize a model that can be used in a large
set of downstream tasks. For example, if we have access to a large corpus of
text, we can always optimize a program to predict how a small piece of text
is likely to continue [RWC+19]. The realization that neural networks can also
perform an efficient embedding of text when pre-trained in a self-supervised
way had a profound impact on the community [MSC+13].1

As we will see in Chap. 8 and Chap. 10, LLMs can be seen as modern iterations
on this basic idea, since optimizing models such as GPT or Llama [TLI+23] al-
ways start by a basic self-supervised training in terms of next-token prediction.
These models are sometimes called foundation models. In the simplest case,
they can be used out-of-the-box for a new task, such as answering a query: in
this case, we say they are used in a zero-shot fashion. For LLMs, it is also pos-
sible to provide a small number of examples of a new task as input prompt, in
which case we talk about few-shot learning. In the most general case, we can
take a pre-trained foundation model and optimize its parameters by gradient

1Large-scale web datasets are also full of biases, profanity, and vulgar content. Recognizing
that models trained on this data internalize these biases was another important realization
[BCZ+16] – only partially internalized – which is one of the major criticisms of closed-source
foundation models [BGMMS21].
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descent on a new task: this is called fine-tuning the model. See Fig. F.3.2 for a
comparison of the three approaches. In this book we focus on building models
from scratch, but fine-tuning can be done by similar means.

Fine-tuning is made especially easy by the presence of large open-source repos-
itories online.2 Fine-tuning can be done on the full set of parameters of the
starting model, or by considering only a smaller subset or a small number of
additional parameters: this is called parameter-efficient fine-tuning (PEFT)
[LDR23].3 We will consider PEFT techniques in the next volume.

Many other variations of supervised learning are possible, which we do not
have space to list in detail here except for some generic hints. If only parts of
a dataset are labeled, we have a semi-supervised scenario [BNS06]. We will
see some examples of self-supervised learning in Chapter 12. Additionally, we
can have scenarios with multiple datasets belonging to “similar” distributions,
or the same distribution over different period of times, giving rise to count-
less tasks depending on the order in which the tasks or the data are provided,
including domain adaptation, meta-learning [FAL17], continual learning
[PKP+19, BBCJ20], metric learning, etc. Some of these will be treated in the
next volume.

More on the i.i.d. property

Importantly, ensuring the i.i.d. property is not a one-shot process, and it
must be checked constantly during the lifetime of a model. In the case of
car classification, if unchecked, subtle changes in the distribution of cars
over time will degrade the performance of a machine learning model, an
example of domain shift. As another example, a recommender system
will change the way users interact with a certain app, as they will start
reacting to suggestions of the recommender system itself. This creates
feedback loops [CMMB22] that require constant reevaluation of the per-
formance of the system and of the app.

2https://huggingface.co/models
3Few-shot learning can also be done by fine-tuning the model. In cases in which fine-tuning

is not needed, we say the model is performing in-context learning [ASA+22].
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3.2 Loss functions

Once data has been gathered, we need to formalize our idea of “approximat-
ing” the desired behavior, which we do by introducing the concept of loss func-
tions.

Definition D.3.2 (Loss function) Given a desired target y and the predicted
value ŷ = f (x) from a model f , a loss function l(y, ŷ) ∈ R is a scalar, differ-
entiable function whose value correlates with the performance of the model,
i.e., l(y, ŷ1)< l(y, ŷ2) means that the prediction ŷ1 is better than the predic-
tion ŷ2 when considering the reference value (target) y.

A loss function embeds our understanding of the task and our preferences in the
solutions’ space on a real-valued scale that can be exploited in an optimization
algorithm. Being differentiable, it allows us to turn our learning problem into
a mathematical optimization problem that can be solved via gradient descent
by minimizing the average loss on our dataset.

To this end, given a dataset Sn = {(x i, yi)} and a loss function l(·, ·), a sen-
sible optimization task to solve is the minimum average loss on the dataset
achievable by any possible differentiable model f :

f ∗ = arg min
f

1
n

n
∑

i=1

l(yi, f (x i) ) (E.3.1)

Average over the dataset

Prediction of f on the i-th sample from the dataset

For historical reasons, (E.3.1) is referred to as empirical risk minimization
(ERM), where risk is used as a generic synonym for loss. See also the box in
the next page for more on the origin of the term.

In (E.3.1) we are implicitly assuming that we are minimizing across the space
of all possible functions defined on our input x . We will see shortly that our
models can always be parameterized by a set of tensors w (called parameters
of the model), and minimization is done by searching for the optimal value
of these parameters via numerical optimization, which we denote by f (x , w).
Hence, given a dataset Sn, a loss function l, and a model space f , we can
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train our model by optimizing the empirical risk (E.3.1) via gradient descent
(E.2.26):

w∗ = argmin
w

1
n

n
∑

i=1

l(yi, f (x i, w)) (E.3.2)

where the minimization is now done with respect to the parameter’s tensor w.

On the differentiability of the loss

Before proceeding, we make two observations on the ERM framework. First,
note that the differentiability requirement on l is fundamental. Consider a
simple binary classification task (that we will introduce properly in the next
chapter), where y ∈ {−1,+1} can only take two values, −1 or 1. Given a real-
valued model f (x) ∈ R, we can equate the two decisions with the sign of f –
which we denote as sign( f (x)) – and define a 0/1 loss as:

l(y, ŷ) =

¨

0 if sign( ŷ) = y
1 otherwise

(E.3.3)

While this aligns with our intuitive notion of “being right”, it is useless as loss
function since its gradient will almost always be zero (except when the sign of
f switches), and any gradient descent algorithm will remain stuck at initializa-
tion. A less intuitive quantity in this case is the margin y ŷ , which is positive
[negative] depending on whether the sign of the model aligns [or does not
align] with the desired one, but it varies continuously differently from 0/1 loss
in (E.3.3).

A possible loss function in this case is the hinge loss l(y, ŷ) =max(0, 1− y ŷ),
which is used to train support-vector models. Details apart, this shows the
inherent tension between designing loss functions that encode our notion of
performance while at the same time being useful for numerical optimization.

3.2.1 Expected risk and overfitting

As a second observation, note that the empirical risk is always trivial to mini-
mize, by defining:
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f (x) =

(

y if (x , y) ∈ Sn

ȳ otherwise
. (E.3.4)

x is in the training set

Default value, e.g., 0

This is a look-up table that returns a prediction y if the pair (x , y) is contained
in the dataset, while it defaults to some constant prediction ȳ (e.g., 0) other-
wise. Assuming that the loss is lower-bounded whenever y = ŷ , this model
will always achieve the lowest possible value of empirical risk, while providing
no actual practical value.

This shows the difference between memorization and learning (optimiza-
tion). Although we search for a model by optimizing some average loss quan-
tity on our training data, as in (E.3.1), our true objective is minimizing this
quantity on some unknown, future input yet to be seen. The elements of our
training set are only a proxy to this end. We can formalize this idea by defining
the expected risk minimization problem.

Definition D.3.3 (Expected risk) Given a probability distribution p(x , y)
and a loss function l, the expected risk (ER) is defined as:

ER[ f ] = Ep(x ,y) [l(y, f (x))] (E.3.5)

Minimizing (E.3.5) can be interpreted as minimizing the average (expected)
loss across all possible input-output pairs (e.g., all possible emails) that our
model could see. Clearly, a model with low expected risk would be guaranteed
to work correctly. However, the quantity in (E.3.5) is unfeasible to compute
in practice, as enumerating and labeling all data points is impossible. The
empirical risk provides an estimate of the expected risk under the choice of a
given dataset and can be seen as a Monte Carlo approximation of the ER term.

The difference in loss between the expected and the empirical risk is called
the generalization gap: a pure memorization algorithm like (E.3.4) will have
poor generalization or, in other terms, it will overfit to the specific training data
we provided. Generalization can be tested in practice by keeping a separate
test dataset Tm with m data points never used during training, Sn ∪ Tm = ;.
Then, the different empirical loss on Sn and Tm can be used as an approximate
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measure of overfitting.

Risk and loss

Empirical and expected risk minimization framed in this way are gener-
ally associated with the work of the Russian computer scientist V. Vapnik
[Vap13], which gave rise to the field of statistical learning theory (SLT).
SLT is especially concerned with the behaviour of (E.3.1) when seen
as a finite-sample approximation of (E.3.5) under some restricted class
of functions f and measure of underlying complexity [PS+03, SSBD14,
MRT18]. The counter-intuitive properties of modern neural networks
(such as strong generalization long after overfitting should have been ex-
pected) have opened many new avenues of research in SLT [PBL20]. See
also the introduction of Chapter 9.

3.2.2 How to select a valid loss function?

If you haven’t already, this is a good time to study (or skim) the material
in Appendix A, especially probability distributions, sufficient statistics,
and maximum likelihood estimation.

As we will see in the next chapters, the loss encodes our a priori knowledge on
the task to be solved, and it has a large impact on performance. In some cases,
simple considerations on the problem are enough to design valid losses (e.g.,
as done for the hinge loss in Section 3.2).

However, it is possible to work in a more principled fashion by reformulating
the entire training process in purely probabilistic terms, as we show now. This
formulation provides an alternative viewpoint on learning, which may be more
intuitive or more useful in certain scenarios. It is also the preferred viewpoint
of many books [BB24]. We provide the basic ideas in this section, and we
consider specific applications later on in the book.

The key observation is the following. In Section 3.1, we started by assuming
that our examples come from a distribution p(x , y). By the product rule of
probability, we can decompose p(x , y) as p(x , y) = p(x)p(y | x), such that
p(x) depends on the probability of observing each input x , and the conditional
term p(y | x) describes the probability of observing a certain output y given
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an input x .4 Approximating p(y | x) with a function f (x) makes sense if we
assume that the probability mass is mostly concentrated around a single point
y , i.e., p(y | x) is close to a so-called Dirac delta function, and it drastically
simplifies the overall problem formulation.

However, we can relax this by assuming that our model f (x) does not provide
directly the prediction, but it is used instead to parameterize the sufficient
statistics of a conditional probability distribution p(y | f (x)) over possible
outputs. For example, consider a classification problem where y ∈ {1,2, 3}
can take three possible values. We can assume our model has three outputs
that parameterize a categorical distribution over these classes, such that:

p(y | f (x)) =
3
∏

i=1

fi(x)
yi

where y ∼ Binary(3) is the one-hot encoding of the class y5 and f (x) ∼∆(3)
are the predicted probabilities for each class. As another example, assume we
want to predict a single scalar value y ∈ R (regression). We can model this
with a two-valued function f (x) ∼ (2) such that the prediction is a Gaussian
with appropriate mean and variance:

p(y | f (x)) =N (y | f1(x), f 2
2 (x) ) (E.3.6)

Squared to ensure positivity

where the second output of f (x) is squared to ensure the predicted variance
remains positive. As can be seen, this is a very general setup that subsumes our
previous discussion, and it provides more flexibility to the designer, as choosing
a specific parameterization for p(y | x) can be easier than choosing a specific
loss function l(y, ŷ). In addition, this framework provides a more immediate
way to model uncertainty, such as the variance in (E.3.6).

4We can also decompose it as p(x , y) = p(x | y)p(y). Methods that require to estimate
p(x) or p(x | y) are called generative, while methods that estimate p(y | x) are called dis-
criminative. Apart from language modeling, in this book we focus on the latter case, and we
consider generative modelling more broadly in the next volume.

5Given an integer i, its one-hot representation is a vector of all zeros except the i-th element,
which is 1. This is introduced formally in Section 4.2.
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3.2.3 Maximum likelihood

How can we train a probabilistic model? Remember that we assumed the
samples in our dataset Sn to be i.i.d. samples from a probability distribution
p(x , y). Hence, given a model f (x), the probability assigned to the dataset
itself by a specific choice f of function is given by the product of each sample
in the dataset:

p(Sn | f ) =
n
∏

i=1

p(yi | f (x i))

The quantity p(Sn | f ) is called the likelihood of the dataset. For a random
choice of f (x), the model will assign probabilities more or less at random
across all possible inputs and outputs, and the likelihood of our specific dataset
will be small. A sensible strategy, then, is to select the model such that the
likelihood of the dataset is instead maximized. This is a direct application of
the maximum likelihood approach (see Section A.6 in Appendix A).

Definition D.3.4 (Supervised learning as maximum likelihood) Given a
dataset Sn = {(x i, yi)} and a family of probability distributions p(y | f (x))
parameterized by f (x), the maximum likelihood (ML) solution is given by:

f ∗ = argmax
f

n
∏

i=1

p(y | f (x)) .

While we are again left with an optimization problem, it now follows directly
from the laws of probability once all probability distributions are chosen, which
is in contrast to before, where the specific loss was part of the design space.
The two viewpoints, however, are closely connected. Working in log-space and
switching to a minimization problem we obtain:

arg max
f

¨

log
n
∏

i=1

p(y | f (x))

«

= arg min
f

¨

n
∑

i=1

− log(p(y | f (x))

«

Hence, the two formulations are identical if we identify − log(p(y | f (x)) as a
“pseudo-loss” to be optimized. As we will see, all loss functions used in practice
can be obtained under the ML principle for specific choices of this term. Both
viewpoints are interesting, and we urge readers to keep both in mind as we
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progress in the book.

3.3 Even more probability: Bayesian learning

This is an optional section, feel free to skip it if uninterested.

We discuss here a further generalization of the probabilistic formulation called
Bayesian neural networks (BNNs), which is of interest in the literature. We
only provide the general idea and we refer the reader to one of many in-depth
tutorials, e.g., [JLB+22], for more details.

By designing a probability function p(y | f (x)) instead of f (x) directly, we
can handle situations where more than one prediction is of interest (i.e., the
probability function has more than a single mode). However, our procedure
still returns a single function f (x) out of the space of all possible functions,
while it may happen than more than a single parameterization across the entire
model’s space is valid. In this case, it could be useful to have access to all of
them for a more faithful prediction.

Once again, we can achieve this objective by designing another probability
distribution and then letting the rules of probability guide us. Since we are
now planning to obtain a distribution across all possible functions, we start
by defining a prior probability distribution p( f ) over all possible functions
(once again, remember than in the rest of the book f will be described by a
finite set of parameters, in which case the prior p( f ) would be a prior over
these weights). For example, we will see that in many situations functions
with smaller norm are preferred (as they are more stable), in which case we
could define a prior p( f )∝ 1

∥ f ∥ for some norm ∥ f ∥ of f .

Once a dataset is observed, the probability over f shifts depending on the prior
and the likelihood, and the update is given by Bayes’ theorem:

p( f | Sn) =
p(Sn | f ) p( f )

p(Sn)
(E.3.7)

Prior (before observing the dataset)

Posterior (after observing the dataset)
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The term p( f | Sn) is called the posterior distribution function, while the
term p(Sn) in the denominator is called the evidence and it is needed to ensure
that the posterior is properly normalized. Assume for now that we have access
to the posterior. Differently from before, the distribution can encode preference
for more than a single function f , which may provide better predictive power.
Given an input x , we can make a prediction by averaging all possible models
based on their posterior’ weight:

p(y | x) =
∫

f

p(y | f (x)) p( f | Sn) ≈
1
k

k
∑

i=1

p(y | fi(x))p( fi | Sn) (E.3.8)

Prediction of f (x) Weight assigned to f

Monte Carlo approximation

where on the right term of (E.3.8) we have approximated the integral with
a Monte Carlo average over k random samples from the posterior distribu-
tion fk ∼ p( f | Sn). The overall beauty of this setup is marred by the fact
that the posterior is in general impossible to compute in closed-form, except
for very specific choices of prior and likelihood [Bis06]. Lacking this, one is
forced to approximated solutions, either by Markov chain Monte Carlo or by
variational inference [JLB+22]. We will see in Section 9.3.1 one example of
Bayesian treatment of the model’s parameters called Monte Carlo dropout.

We remark on an interesting fact about the posterior before closing this sec-
tion. Suppose we are only interested about the function having higher poste-
rior density. In this case, the evidence term can be ignored and the solution
decomposed into two separate terms:

f ∗ = argmax
f

p(Sn | f )p( f ) = (E.3.9)

argmax
f

¦

log p(Sn | f ) + log p( f )
©

(E.3.10)

Likelihood term Regularization term

This is called the maximum a posteriori (MAP) solution. If all functions have
the same weight a priori (i.e., p( f ) is uniform over the function’s space), then
the second term is a constant and the problem reduces to the maximum like-
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lihood solution. In general, however, the MAP solution will impose a penalty
to functions deviating too much from our prior distribution. We will see this
is a useful idea to combat overfitting and impose specific constraints on the
function f . The term log p( f ) is generally called a regularizer over the func-
tion’s space as it pushes the solution towards the basin of attraction defined
by the prior distribution.6 The Bayesian method also provides a simple way to
incorporate new data, e.g., a new dataset S ′n from the same distribution, by
replacing the prior function in (E.3.7) with the posterior distribution computed
on the first portion of the dataset.

6The difference between maximum likelihood and maximum a posteriori solutions is loosely
connected to the difference between the frequentist and Bayesian interpretation of probabil-
ity [Hac19], i.e., probabilities as frequency of events or probabilities as a measure of uncer-
tainty. From a very high-level point of view, ML sees the parameters as an unknown fixed term
and the data as a random sample, while a Bayesian treatment sees the data as fixed and the
parameters as random variables.
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About this chapter

Programming software is done by choosing the appropriate sequence of
primitive operations to solve a task. By analogy, building a model is done
by choosing the correct sequence of differentiable blocks. In this chapter
we introduce the simplest possible block, so-called linear models, which
assume that inputs act additively on the output via a weighted average. In
a sense, all differentiable models are smart variations and compositions
of linear blocks.

4.1 Least-squares regression

4.1.1 Problem setup

Summarizing the previous chapter, a supervised learning problem can be de-
fined by choosing the input type x , the output type y , the model f , and the
loss function l. In this chapter we consider the simplest possible choices for all
of them, namely:

• The input is a vector x ∼ (c), corresponding to a set of features (e.g., d
personal features of a client of a bank). We use the scalar c to denote the
number of features in analogy with the following chapters.

• The output is a single real value y ∈ R. In the unconstrained case, we
say this is a regression task. If y can only take one out of m possible
values, i.e., y ∈ {1, . . . , m}, we say this is a classification task. In the
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Table T.4.1: Basic shapes to remember for this chapter. For uniformity, we will use the
same letters as much as possible throughout the book.

n size of the dataset
c features
m classes

special case of m= 2, we say this is a binary classification task.

• We take f to be a linear model, providing us with simple closed-form
solutions in some cases, most notably least-squares regression (Section
4.1.3).

The basic shapes to remember are summarized in Table T.4.1. We begin by
discussing the choice of loss in the regression case. We start from the regression
case since, as we show later, the classification case can be solved by small
modifications to the regression one.

4.1.2 Regression losses: the squared loss and variants

Finding a loss for regression is relatively simple, since the prediction error e =
( ŷ − y) between the predicted output of the model ŷ = f (x) and the true
desired output y is a well-defined target, being a continuous function of the
model’s output that decreases monotonically. Since in general we do not care
about the sign of the prediction error, a common choice is the squared loss:

l( ŷ , y) = ( ŷ − y)2 (E.4.1)

Here and in the following we use the symbol ŷ to denote the prediction of
a generic model. As we will see, working with (E.4.1) provides a number of
interesting benefits to our solution. Among others, the gradient of the squared
loss is a linear function of the model’s output, allowing us to solve it in closed-
form for the optimal solution.

Recalling the maximum likelihood principle (Section A.6), the squared loss
can be obtained by assuming that the outputs of the model follow a Gaussian
distribution centered in f (x) and with a constant variance σ2:

52



Chapter 4: Linear models 53

Figure F.4.1: Visualization of
the squared loss, the absolute
loss, and the Huber loss with
respect to the prediction error
e = ( ŷ − y).
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Huber loss (δ = 1.5)

p(y | f (x)) =N (y | f (x),σ2)

In this case the log-likelihood (for a single point) can be written as:1

log(p(y | f (x),σ2)) = − log(σ)−
1
2

log(2π)−
1

2σ2
(y − f (x))2 (E.4.2)

Minimizing (E.4.2) for f , we see that the first two terms on the right-hand side
are constant, and the third reverts to the squared loss. Minimizing for σ2 can
be done independently from the optimization of f , with a simple closed-form
solution (see below, Eq. (E.4.9)).

Coming up with variants to the squared loss is also easy. For example, one
drawback of the squared loss is that higher errors will be penalized with a
strength that grows quadratically in the error, which may provide undue influ-
ence to outliers, i.e., points that are badly mislabeled. Other choices that di-
minish the influence of outliers can be the absolute value loss l( ŷ , y) = | ŷ− y|
or the Huber loss (a combination of the squared loss and the absolute loss):

Huber loss: L(y, ŷ) =

¨

1
2 (y − ŷ)2 if |y − ŷ| ≤ 1
�

|y − ŷ| − 1
2

�

otherwise
(E.4.3)

1Recalling that log(ab) = log(a) + log(b) and log(ab) = b log(a).
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which is quadratic in the promixity of 0 error, and linear otherwise (with the
−1

2 term added to ensure continuity). See Figure F.4.1 for a visualization of
these losses with respect to the prediction error.

The absolute loss seems an invalid choice in our context, since it has a point
of non-differentiability in 0 due to the absolute value. We will see later that
functions with one (or a small number) of points of this form are not truly
problematic. Mathematically, they can be handled by the notion of subgra-
dient (a slight generalization of the derivative). Practically, you can imagine
that if we start from a random initialization, gradient descent will never reach
these points with perfect precision, and the derivatives of |ϵ| for any ϵ > 0 is
always defined.

4.1.3 The least-squares model

With a loss function in hand, we consider the following model (a linear model)
to complete the specification of our first supervised learning problem.

Definition D.4.1 (Linear models) A linear model on an input x is defined
as:

f (x) =w⊤x+ b

where w∼ (c) and b ∈ R (the bias) are trainable parameters.

The intuition is that the model assigns a fixed weight wi to each input feature
x i, and provides a prediction by linearly summing all the effects for a given
input x, reverting to a default prediction equal to b whenever x= 0. Geomet-
rically, the model defines a line for d = 1, a plane for d = 2, and a generic
hyperplane for d > 1. From a notational perspective, we can sometimes avoid
writing a bias term by assuming a constant term of 1 as the last feature of x:

f
��

x
1

��

=w⊤
�

x
1

�

=w⊤1:cx+wc+1

Combining the linear model, the squared loss, and an empirical risk minimiza-
tion problem we obtain the least-squares optimization problem.
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def linear_model(w: Float[Tensor, "c"],
b: Float,
X: Float[Tensor, "n c"])
-> Float[Tensor, "n"]:

return X @ w + b

Box C.4.1: Computing a batched linear model as in (E.4.5). For clarity, we are show-
ing the array dimensions as type hints using jaxtyping (https://docs.kidger.site/
jaxtyping/).

Definition D.4.2 (Least-squares) The least-squares optimization problem
is given by:

w∗, b∗ = argmin
w,b

1
n

n
∑

i=1

�

yi −w⊤xi − b
�2

(E.4.4)

Before proceeding to the analysis of this problem, we rewrite the least-squares
in a vectorized form that only involves matrix operations (matrix products
and norms). This is useful because, as already stated, modern code for neural
networks is built around n-dimensional arrays, with optimized hardware to
perform matrix operations on them. To this end, we first stack all the inputs
and outputs of our training set into an input matrix:

X=





x⊤1
...

x⊤n



∼ (n, c)

and a similar output vector y = [y1, . . . , yn]
⊤. We can write a batched model

output (the model output for a mini-batch of values) as:

f (X) = Xw+ 1b (E.4.5)

Same bias b for all n predictions

Equations like (E.4.5) can be replicated almost line-by-line in code - see Box
C.4.1 for an example in PyTorch.

Of only marginal interest for now but of more importance for later, we note
that the row ordering of the input matrix and of the output vector are funda-
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mentally arbitrary, in the sense that permuting their rows will only result in a
corresponding permutation of the rows of f (X). This is a simple example of
a phenomenon called permutation equivariance that will play a much more
important role later on.

The vectorized least-squares optimization problem becomes:

LS(w, b) =
1
n
∥y−Xw− 1b∥2 (E.4.6)

where we recall that the norm of a vector is defined as ∥e∥2 =
∑

i e2
i .

4.1.4 Solving the least-squares problem

To solve the least-squares problem through gradient descent, we need the equa-
tions for its gradient. Although we will soon develop a general algorithmic
framework to compute these gradients automatically, it is instructive to look
at the gradient itself in this simple scenario. Ignoring the bias (for the reasons
stated above, we can incorporate it in the weight vector), and other constant
terms we have:

∇wLS(w) = X⊤ (Xw− y)

The LS problem is convex in the weights of the model, as can be understood
informally by noting that the equations describe a paraboloid in the space of
the weights (a quadratic function). The global minima are then described by
the equations:

X⊤ (Xw− y) = 0 ⇒ X⊤Xw= X⊤y

These are called the normal equations. Importantly, the normal equations
describe a linear system of equations in w,2 meaning that under the appropriate
conditions (invertibility of X⊤X) we can solve for the optimal solution as:

w∗ =
�

X⊤X
�−1

X⊤y (E.4.7)

2That is, we can write them as Aw= b, with A= X⊤X and b= X⊤y.
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def least_squares_solve(w: Float[Tensor, "c"],
X: Float[Tensor, "n c"],
y: Float[Tensor, "n"],
numerically_stable = True) \
-> Float[Tensor, "c"]:

# Explicit solution
if not numerically_stable:
return torch.linalg.inv(X.T @ X) @ X.T @ y

else:
return torch.linalg.solve(X.T @ X, X.T @ y)

Box C.4.2: Solving the least-squares problem with the closed-form solution. The nu-
merically stable variant calls a solver specialized for systems of linear equations.

Tidbits of information

The matrix X† =
�

X⊤X
�−1

X⊤ is called the pseudoinverse (or Moore-
Penrose inverse) of the non-square matrix X, since X†X = I. Perform-
ing the inversion in (E.4.7) is not always possible: for example, if one
feature is a scalar multiple of the other, the matrix X does not have full
rank (this is called collinearity). Finally, note that the predictions of the
least-squares model can be written as ŷ = My, with M = XX†. Hence,
least-squares can also be interpreted as performing a weighted average
of the training labels, where the weights are given by a projection on the
column space induced by X. This is called the dual formulation of least-
squares. Dual formulations provide an intrinsic level of debugging of the
model, as they allow to check which inputs were the most relevant for a
prediction by checking the corresponding dual weights [ICS22].

This is the only case in which we will be able to express the optimal solution
in a closed-form way, and it is instructive to compare this solution with the
gradient descent one. To this end, we show in Box C.4.2 an example of solving
the least-squares in closed form using (E.4.7), and in Box C.4.3 the equivalent
gradient descent formulation. A prototypical evolution of the loss in the latter
case is plotted in Figure F.4.2. Since we selected a very small learning rate, each
step in the gradient descent procedure provides a stable decrease in the loss,
until convergence. Practically, convergence could be checked by numerical
means, e.g., by evaluating the difference in norm between two iterations for
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58 Least-squares regression

def least_squares_gd(X: Float[Tensor, "n c"],
y: Float[Tensor, "n"],
learning_rate=1e-3) \
-> Float[Tensor, "c"]:

# Initializing the parameters
w = torch.randn((X.shape[1], 1))

# Fixed number of iterations
for i in range(15000):
# Note the sign: the derivative has a minus!
w = w + learning_rate * X.T @ (y - X @ w)

return w

Box C.4.3: Same task as Box C.4.2, solved with a naive implementation of gradient
descent with a fixed learning rate that defaults to η= 0.001.

some numerical threshold ϵ > 0:

∥wt+1 −wt∥2 < ϵ (E.4.8)

As we will see, understanding when more complex models have converged will
be a more subtle task.

From the maximum likelihood interpretation in (E.4.2), we can also minimize
for the variance σ2 once the weights have been trained, obtaining:

σ2
∗ =

1
n

n
∑

i=1

(yi −w⊤∗ xi)
2 . (E.4.9)

which has the intuitive meaning that the variance of the model is constant (by
definition) and given by the average squared prediction error on our training
data. More sophisticated probabilistic models can be obtained by assuming
the variance itself is predicted by the model (heteroscedastic models), see
[Bis06].

4.1.5 Some computational considerations

Even if the inverse can be computed, the quality of the solution will depend on
the condition number of X⊤X, and large numerical errors can occur for poorly
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Figure F.4.2: An example of running
code from Box C.4.2, where the data
is composed of n = 10 points drawn
from a linear model w⊤x+ϵ, with wi ∼
N (0,1) and ϵ ∼ N (0,0.01). Details
apart, note the very smooth descent:
each step provides a decrease in loss.
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conditioned matrices.3 In addition, the computational cost of solving (E.4.7)
may be prohibitive. The matrix inversion will scale, roughly, as O (c3). As for
the matrix multiplications, the algorithm requires a multiplication of a c × n
matrix with another n× c one, and a multiplication between a c× c matrix and
a c × n one. Both these operations will scale as O (c2n).

In general, we will always prefer algorithms that scale linearly both in the
feature dimension c and in the batch size n, since super-linear algorithms will
become quickly impractical (e.g., a batch of 32 RGB images of size 1024×1024
has c ≈ 1e7). We can avoid a quadratic complexity in the equation of the gra-
dient by computing the multiplications in the correct order, i.e., computing the
matrix-vector product Xw first. Hence, pure gradient descent is linear in both
c and n, but only if proper care is taken in the implementation: generaliz-
ing this idea is the fundamental insight for the development of reverse-mode
automatic differentiation, a.k.a. back-propagation (Section 6.3).

4.1.6 Regularizing the least-squares solution

Looking again at the potential instability of the inversion operation, suppose
we have a dataset for which the matrix is almost singular, but we still wish to
proceed with the closed-form solution. In that case, it is possible to slightly
modify the problem to achieve a solution which is “as close as possible” to the
original one, while being feasible to compute. For example, a known trick is to

3The condition number of a matrix A is defined as κ(A) = ∥A∥∥A−1∥ for some choice of
matrix norm ∥·∥. Large conditions number can make the inversion difficult, especially if the
floating-point precision is not high.
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60 Linear models for classification

add a small multiple, λ > 0, of the identity matrix to the matrix being inverted:

w∗ =
�

X⊤X+λI
�−1

X⊤y

This pushes the matrix to be “more diagonal” and improves its condition num-
ber. Backtracking to the original problem, we note this is the closed form so-
lution of a modified optimization problem:

LS-Reg(w) =
2
n
∥y−Xw∥2+

λ

2
∥w∥2

This problem is called regularized least-squares (or ridge regression), and
the red part in the loss is an instance of ℓ2-regularization (or, more generally,
regularization). Note that regularization does not depend on the dataset, as
it simply encodes a preference for a certain type of solution (in this case, low-
norm weights), where the strength of the preference itself is defined by the
hyper-parameter λ. From a Bayesian perspective (Section 3.3), the regularized
least-squares corresponds to a MAP solution when defining a Gaussian prior
over the weights centered in zero with constant variance.

4.2 Linear models for classification

We now move to classification, in which yi ∈ {1, . . . , m}, where m defines the
number of classes. As we will see later, this is a widely influential problem,
encompassing a range of tasks in both computer vision (e.g., image classifica-
tion) and natural language processing (e.g., next-token prediction). We can
tackle this problem by slight variations with respect to the regression case.

While we can solve the task by regressing directly on the integer value yi, it is
instructive to consider why this might not be a good idea. First, it is difficult
for a model to directly predict an integer value, since this requires some form
of thresholding operations that would render its gradient zero almost every-
where. Instead, we could regress on a real value ỹi ∈ [1, m] inside the interval
from 1 to m (as we will show, bounding the output of the model inside an in-
terval can be done easily). During inference, given the output ŷi = f (xi), we
map back to the original domain by rounding:

Predicted class= round( ŷi)
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For example, ŷi = 1.3 would be mapped to class 1, while ŷi = 3.7 would be
mapped to class 4. Note that this is a post-hoc processing of the values that is
only feasible at inference time. The reason this is not a good modelling choice
is that we are introducing a spurious ordering of the classes which might be
exploited by the model itself, where class 2 is “closer” to class 3 than it is to
class 4. We can avoid this by moving to a classical one-hot encoded version
of y , which we denote by yoh ∼ Binary(C):

[yoh] j =

¨

1 if y = j
0 otherwise

For example, in the case of three classes, we would have yoh = [1 0 0]⊤ for
class 1, yoh = [0 1 0]⊤ for class 2, and yoh = [0 0 1]⊤ for class 3 (this rep-
resentation should be familiar to readers with some background in machine
learning, as it is a standard representation for categorical variables).

One-hot vectors are unordered, in the sense that given two generic outputs
yoh

1 and yoh
2 , their Euclidean distance is either 0 (same class) or

p
2 (different

classes). While we can perform a multi-valued regression directly on the one-
hot encoded outputs, with the mean-squared error known as the Brier score
in this case, we show below that a better and more elegant solution exists, in
the form of logistic regression.

4.2.1 The probability simplex and the softmax function

We cannot train a model to directly predict a one-hot encoded vector (for the
same reasons described above), but we can achieve something similar by a
slight relaxation. To this end, we re-introduce the probability simplex.

Definition D.4.3 (Probability simplex) The probability simplex∆n is the
set of vectors x∼∆(n) such that:

x i ≥ 0,
∑

i

x i = 1

Geometrically, you can picture the set of one-hot vectors as the vertices of an
n-dimensional polytope, and the simplex as its convex hull: values inside the
simplex, such as [0.2, 0.05,0.75], do not precisely correspond to a vertex, but
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62 Linear models for classification

they allow for gradient descent because we can smoothly move inside the poly-
tope. Given a value x ∈∆n, we can project to its closest vertex (the predicted
class) as:

i = argmax
i
{xi}

As the name implies, we can interpret values inside the simplex as probabil-
ity distributions, and projection on the closest vertex as finding the mode (the
most probable class) in the distribution. In this interpretation, a one-hot en-
coded vector is a “special case” where all the probability mass is concentrated
on a single class (which we know to be the correct one).

In order to predict a value in this simplex, we need two modifications to the
linear model from (E.4.4): first, we need to predict an entire vector simulta-
neously; and second, we need to constrain the outputs to lie in the simplex.
First, we modify the linear model to predict a m-dimensional vector:

y=Wx+ b (E.4.10)

where W∼ (m, c) can be interpreted as m linear regression models running in
parallel, and b ∼ (m). This output is unconstrained and it is not guaranteed
to be in the simplex. The idea of logistic regression is to combine the linear
model in (E.4.10) with a simple, parameter-free transformation that projects
inside the simplex, called the softmax function.

Definition D.4.4 (Softmax function) The softmax function is defined for
a generic vector x∼ (m) as:

[softmax(x)]i =
exp(x i)

∑

j exp(x j)
(E.4.11)

Let us decompose the terms in (E.4.11) into the basic computations that are
executed:

hi = exp(x i)

Z =
∑

j

h j

yi = hi/Z
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Figure F.4.3: Example of softmax applied to a three-dimensional vector (a), with tem-
perature set to 1 (b), 10 (c), and 100 (d). As the temperature increases, the output
converges to a uniform distribution. Note that inputs can be both positive or negative,
but the outputs of the softmax are always constrained in [0, 1].

The denominator of the softmax converts each value to a positive value hi by
exponentiation. These new, positive values are then normalized to sum to one
in the denominator by dividing by their sum, Z . Another perspective comes
from considering a more general version of the softmax, where we add an
additional hyper-parameter τ > 0 called the temperature:

softmax(x;τ) = softmax(x/τ)

The softmax keeps the relative ordering among the values of x i for all values
of τ, but their absolute distance is increased or decreased based on the tem-
perature. In particular, we have the following two limiting cases:

lim
τ→∞

softmax(x;τ) = 1/c (E.4.12)

lim
τ→0

softmax(x;τ) = arg max
i

x i (E.4.13)

For infinite temperature, relative distances will disappear and the output re-
verts to a uniform distribution. At the contrary, at 0 temperature the softmax
reverts to the (poorly differentiable) argmax operation. Hence, softmax can
be seen as a simple differentiable approximation to the argmax, and a better
name should be softargmax. However, we will retain the most standard name
here. See Figure F.4.3 for a visualization of a softmax applied on a generic
three-dimensional vector with different temperature values.
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64 Linear models for classification

4.2.2 The logistic regression model

We can summarize our previous discussion by combining the softmax in (E.4.11)
with the linear model in (E.4.10) to obtain a linear model for classification:

ŷ= softmax (Wx+ b)

The pre-normalized outputs h = Wx+ b are called the logits of the model, a
name that will be discussed in more detail in the next section.

The only thing left to complete the specification of the logistic regression model
is a loss function. We can achieve this easily by considering the probabilis-
tic viewpoint from Section 3.2.2. Because our outputs are restricted to the
probability simplex, we can interpret them as the parameters of a categorical
distribution:

p( yoh | ŷ) =
∏

i

ŷ
yoh

i

i

Exponent is always either 0 or 1

One-hot encoded class

Computing the maximum likelihood solution in this case (try it) gets us the
cross-entropy loss.

Definition D.4.5 (Cross-entropy loss) The cross-entropy loss function be-
tween yoh and ŷ is given by:

CE(yoh, ŷ) = −
∑

i

yoh
i log( ŷi) (E.4.14)

The loss can also be derived as the KL divergence between the two probability
distributions. While unintuitive at first, it has a very simple interpretation by
noting that only one value of yoh will be non-zero, corresponding to the true
class y = argmax

i

�

yoh
i

	

. We can then simplify the loss as:

CE(y, ŷ) = − log( ŷy ) (E.4.15)

Probability assigned to the true class
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From (E.4.15), we see that the effect of minimizing the CE loss is to maximize
the output probability corresponding to the true class. This works since, due
to the denominator in the softmax, any increase in one output term will auto-
matically lead to a decrease of the other terms. Putting everything together,
we obtain the logistic regression optimization problem:

LR(W,b) =
1
n

n
∑

i=1

CE
�

yoh
i , softmax(Wxi + b)

�

.

Differently from least-squares, we cannot compute a closed-form solution any-
more, but we can still proceed with gradient descent. We will show in the
next section an example of gradient in this case, and in Section 6.3 a generic
technique to compute gradients.

4.3 Additional topics on classification

4.3.1 Binary classification

Consider now the specific case of m = 2. In this case we have y ∈ {0, 1},
and the problem reduces to binary classification, sometimes called concept
learning (as we need to learn whether a certain binary “concept” is present
or absent in the input). With a standard logistic regression, this would be
modelled by a function having two outputs. However, because of the softmax
denominator, the last output of a logistic regression is always redundant, as it
can be inferred knowing that the outputs must sum to 1:

fm(x) =
m−1
∑

i=1

fi(x)

Based on this, we can slightly simplify the formulation by considering a scalar
model with a single output f (x) ∈ [0,1], such that:

Predicted class= round( f (x)) =

¨

0 if f (x)≤ 0.5

1 otherwise

To achieve the desired normalization in [0, 1], the first output of a two-valued
softmax can be rewritten as exp(x1)

1+exp(x1)
, and we can further simplify it by dividing
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Figure F.4.4: Plot of the
sigmoid function. Note that
σ(0) = 0.5.
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both sides by exp(x1). The result is the sigmoid function.

Definition D.4.6 (Sigmoid function) The sigmoid function σ(x) : R →
[0, 1] is given by:

σ(x) =
1

1+ exp(−s)

The sigmoid provides a generic transformation projecting any real value to the
[0, 1] interval (with the two extremes being reached only asymptotically). Its
graph is shown in Figure F.4.4.

The binary logistic regression model is obtained by combining a one-dimensional
linear model with a sigmoid rescaling of the output:

f (x) = σ
�

w⊤x+ b
�

The cross-entropy similarly simplifies to:

CE( ŷ , y) = − y log( ŷ) − (1− y) log(1− ŷ) (E.4.16)

Loss for class 1 Loss for class 2

Hence, in the binary classification case we can solve the problem with two
equivalent approaches: (a) a two-valued model with the standard softmax, or
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(b) a simplified one-valued output with a sigmoid output transformation.

As an interesting side-note, consider the gradient of the binary logistic regres-
sion model with respect to w (a similar gradient can also be written for the
standard multi-class case.):

∇CE( f (x), y) = ( f (x)− y)x

Note the similarity with the gradient of a standard linear model for regression.
This similarity can be further understood by rewriting our model as:

w⊤x+ b = log
�

y
1− y

�

(E.4.17)

Logits Sigmoid inverse: σ−1(y)

This clarifies why we were referring to the model as a “linear model” for clas-
sification: we can always rewrite it as a purely linear model in terms of a non-
linear transformation of the output (in this case, the inverse of the sigmoid,
also known as the log-odds). In fact, the logistic regression model is part of a
broader family of models extending this idea, called generalized linear mod-
els. For the curious reader, the name of the logit can be understood in this
context in reference to the probit function.4

4.3.2 The logsumexp trick

This is a more technical subsection that clarifies an implementation aspect of
what we described up to now. Looking at frameworks like TensorFlow or Py-
Torch, we can find multiple existing implementations of the cross-entropy loss,
based on whether the output is described as an integer or as a one-hot encoded
vector. This can be understood easily, as we have already seen that we can for-
mulate the cross-entropy loss in both cases. However, we can also find variants
that accept logits instead of the softmax-normalized outputs, as shown in Box
C.4.4.

To understand why we would need this, consider the i-th term of the cross-

4https://en.wikipedia.org/wiki/Probit
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# Binary cross-entropy
torch.nn.functional.binary_cross_entropy
# Binary cross-entropy accepting logits
torch.nn.functional.binary_cross_entropy_with_logits
# Standard cross-entropy, only works with logits
torch.nn.functional.cross_entropy
# Cross-entropy accepting log f(x) as inputs
torch.nn.functional.nll_loss

Box C.4.4: Cross entropy losses in PyTorch. Some losses are only defined starting from
the logits of the model, instead of the post-softmax output. These are the functional vari-
ants of the losses - equivalent object-oriented variants are also present in most frameworks.

entropy in terms of the logits p:

− log

�

exp pi
∑

j exp p j

�

.

This term can give rise to several numerical issues, notably due to the interplay
between the (potentially unbounded) logits and the exponentiation. To solve
this, we first rewrite it as:

− log

�

exp pi
∑

j exp p j

�

= −pi + log

�

∑

j

exp p j

�

︸ ︷︷ ︸

≜ logsumexp(p)

The first term does not suffer from instabilities, while the second term (the
logsumexp of the logits) is a function of the entire logits’ vector, and it can be
shown to be invariant for a given scalar c ≥ 0 in the following sense:5

logsumexp(p) = logsumexp(p− c) + c

Note that ∇softmax(·) = logsumexp(·). By taking c =max(p) we can prevent
numerical problems by bounding the maximum logit value at 0. However, this
is only possible if we have access to the original logits, which is why numerically
stable variants of the cross-entropy require them as inputs. This creates a little
amount of ambiguity, in that the softmax can now be included as either part

5https://gregorygundersen.com/blog/2020/02/09/log-sum-exp/
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of the model, or as part of the loss function.

4.3.3 Calibration and classification

We close the chapter by briefly discussing the important topic of calibration
of the classifier. To understand it, consider the following fact: although our
model provides an entire distribution over the possible classes, our training
criterion only targets the maximization of the true class. Hence, the following
sentence is perfectly justified:

The predicted class of f (x) is argmax
i

[ f (x)]i.

Instead, this more general sentence might not be correct:

The probability of x being of class i is [ f (x)]i.

When the confidence scores of the network match the probability of a given
prediction being correct, we say the network’s outputs are calibrated.

Definition D.4.7 (Calibration) A model f (x) is said to be calibrated if the
following holds for any possible prediction:

[ f (x)]i = p(y = i | x)

Although the cross entropy should recover the conditional probability distri-
bution over an unrestricted class of models and in the limit of infinite data
[HTF09], in practice the mismatch between the two may be high [BGHN24],
especially for the more complex models we will introduce later.

To understand the difference between accuracy and calibration, consider these
two scenarios. First, consider a binary classification model that has perfect ac-
curacy, but always predicts the true class with 0.8 confidence. In this case, the
model is clearly underconfident in its predictions, since by looking at the confi-
dence we may assume that 20% of them would be incorrect. Second, consider
a 4 class problem with perfectly balanced classes, with a model that always
predict [0.25, 025,0.25, 0.25]. In this case, the model is perfectly calibrated,
but useless from the point of view of accuracy.

Having access to a calibrated model is very important in situations in which dif-
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ferent predictions may have different costs. This can be formalized by defining
a so-called cost matrix assigning a cost Ci j for any input of class i predicted
as class j. A standard example is a binary classification problem having the
matrix of costs shown in Table T.4.2.

Table T.4.2: Example of cost matrix for a classification problem having asymmetric
costs of misclassification.

True class 0 True class 1

Predicted class 0 0 10
Predicted class 1 1 0

We can interpret Table T.4.2 as follows: making a correct prediction incurs no
cost, while making a false negative mistake (0 instead of 1) is 10 times more
costly than making a false positive mistake. As an example, an incorrect false
negative mistake in a medical diagnosis is much worse than a false positive
error, in which a further test may correct the mistake. A calibrated model can
help us is better estimating the average risk of its deployment, and to fine-tune
our balance of false positive and false negative mistakes.

To see this, denote by C ∼ (m, m) the generic matrix of costs for a multiclass
problem (like the 2× 2 matrix in Table T.4.2). The rational choice is to select
a class which minimizes the expected cost based on the scores assigned by our
model:

argmin
i

m
∑

j=1

Ci j[ f (x)] j

If Ci j = 1 whenever i ̸= j and 0 otherwise, this reduces to selecting the argmax
of f , but for a general matrix of costs the choice of predicted class will be
influenced by the relative costs of making specific mistakes. This is a simple
example of decision theory [Bis06].

4.3.4 Estimating the calibration error

To estimate whether a model is calibrated we can bin its predictions, and com-
pare its calibration to the accuracy in each bin. To this end, suppose we split
the interval [0,1] into b equispaced bins, each of size 1/b. Take a validation
set of size n, and denote byBi the elements whose confidence falls into bin i.
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Figure F.4.5: An example of reliabil-
ity plot with b = 10 bins. The blue bars
show the average accuracy of the model
on that bin, while the red bars show the
miscalibration for the bin, which can be
either under-confident (below the diago-
nal) or over-confident (above the diago-
nal). The weighted sum of the red blocks
is the ECE in (E.4.18). 0.0 0.2 0.4 0.6 0.8 1.0
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For each bin, we can further compute the average confidence pi of the model
(which will be, approximately, in the middle of the bin), and the average accu-
racy ai. Plotting the set of pairs (ai, pi) on an histogram is called a reliability
diagram, as shown in Figure F.4.5. To have a single, scalar metric of calibration
we can use, for example, the expected calibration error (ECE):

ECE=
∑

i

|Bi|
n

|ai − pi| (E.4.18)

Calibration for bin i

Fraction of validation set falling into bin i

Other metrics, such as the maximum over the bins, are also possible. If the
model is found to be uncalibrated, modifications need to be made. Examples
include rescaling the predictions via temperature scaling [GPSW17] or opti-
mizing with a different loss function such as the focal loss [MKS+20].

We close by mentioning an alternative to direct calibration of the model, called
conformal prediction, which has become popular recently [AB21]. Suppose
we fix a threshold γ, and we take the set of classes predicted by the model
whose corresponding probability is higher than γ:

C (x) = {i | [ f (x)]i > γ} (E.4.19)

i.e., the answer of the model is now a setC (x) of potential classes. An example
is shown in Figure F.4.6. The idea of conformal prediction is to select the
minimum γ such that the probability of finding the correct class y in the set is
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Figure F.4.6: Calibration by turning
the model’s output into a set: we return
all classes whose predicted probability
exceeds a given threshold. By properly
selecting the threshold we can bound the
probability of the true class being found
in the output set.
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higher than a user-defined error α:6

p(y ∈ C (x))≥ 1−α (E.4.20)

Intuitively, there is an inversely proportional relation between γ and α. Con-
formal prediction provides automatic algorithms to guarantee (E.4.20) at the
cost of not having a single class in output anymore.

6Note that it is always possible to satisfy this property by selecting γ= 0, i.e., including all
classes in the output set.
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About this chapter

Standard programming is done by concatenating together the proper
primitive operations. In this chapter we show we can do something simi-
lar for differentiable models, by composing a sequence of so-called fully-
connected layers. For historical reasons, these models are also known
as multilayer perceptrons (MLPs). MLPs are built by interleaving linear
blocks (similar to Chapter 4) with non-linear functions, sometimes called
activation functions.

5.1 The limitations of linear models

Linear models are fundamentally limited, in the sense that (by definition) they
cannot model non-linear relationships across features. To understand what
we mean, consider two input vectors x and x′, which are identical except for a
single feature indexed by j:

x ′i =

¨

x i if i ̸= j
2x i otherwise

For example, this can represent two clients of a bank, which are identical in all
aspects except for their income, with x′ having double the income of x. If f is
a linear model (with no bias) we have:
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Figure F.5.1: Illustration of the XOR
dataset: green squares are values of one
class, red circles are values of another
class. No linear model can separate
them perfectly (putting all squares on
one side and all circles on the other side
of the decision boundary). We say that
the dataset is not linearly separable.

0

1

0

0 1

1

f (x′) = f (x) + w j x j

Original output Modification induced by x ′j = 2x j

Hence, the only consequence of the change in input is a small linear change
of output dictated by w j. Assume we are scoring the users, we may wish to
model relationships such as “an income of 1500 is low, except if the age < 30”.1

Clearly, this cannot be done with a linear model due to the analysis above.

The prototypical example of this is the XOR dataset, a two-valued dataset
where each feature can only take values in {0,1}. Hence, the entire dataset is
given by only 4 possibilities:

f ([0, 0]) = 0 , f ([0,1]) = 1 , f ([1, 0]) = 1 , f ([1,1]) = 0

where the output is positive whenever only one of the two inputs is positive.
Despite its simplicity, this is also non-linearly separable, and cannot be solved
with 100% accuracy by a linear model - see Figure F.5.1 for a visualization.

5.2 Composition and hidden layers

A powerful idea in programming is decomposition, i.e., breaking down a prob-
lem into its constituent parts recursively, until each part can be expressed in
simple, manageable operations. Something similar can be achieved in our case

1You probably shouldn’t do credit scoring with machine learning anyways.
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by imagining that our model f is, in fact, the composition of two trainable op-
erations:

f (x) = ( f2 ◦ f1)(x)

where f2 ◦ f1 is the composition of the two functions: ( f2 ◦ f1)(x) = f2( f1(x)),
and we assume that each function instantiates its own set of trainable param-
eters. We can keep subdividing the computations:

f (x) = ( fl ◦ fl−1 ◦ · · · ◦ f2 ◦ f1)(x)

where we now have a total of l functions that are being composed. Note that
as long as each fi does not change the “type” of its input data, we can chain
together as many of these transformations as we want, and each one will add
its own set of trainable parameters.

For example, in our case the input x is a vector, hence any vector-to-vector
operation (e.g., a matrix multiplication fi(x) =Wx) can be combined together
an endless number of times. However, some care must be taken. Suppose we
chain together two different linear projections:

h= f1(x) =W1x+ b1 (E.5.1)

y = f2(h) =w⊤2 h+ b2 (E.5.2)

It is easy to show that the two projections “collapse” into a single one:

y = (w⊤2 W1)
︸ ︷︷ ︸

≜ A

x+ (w⊤2 b1 + b2)
︸ ︷︷ ︸

≜ c

= Ax+ c

The idea of fully-connected (FC) models, also known as multi-layer percep-
trons (MLPs) for historical reasons, is to insert a simple elementwise non-
linearity φ : R→ R in between projections to avoid the collapse.

h= f1(x) = φ (W1x+ b1) (E.5.3)

y = f2(h) =w⊤2 h+ b2 (E.5.4)

Element-wise non-linearity
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The second block can be linear, as in (E.5.4), or it can be wrapped into another
non-linearity depending on the task (e.g., a softmax function for classification).
We can chain as many of these transformations as we want:

y =w⊤l φ (Wl−1 (φ (Wl−2φ (· · · ) + bl−2)) + bl−1) + bl (E.5.5)

φ can be any non-linearity, e.g., a polynomial, square-root, or the sigmoid
function σ. As we will see in the next chapter, choosing it has a strong effect
on the gradients of the model and, consequently, on optimization, and the
challenge is to select a φ which is “non-linear enough” to prevent the collapse
while staying as close as possible to the identity in its derivative. As we will
see, a good default choice is the so-called rectified linear unit (ReLU).

Definition D.5.1 (Rectified linear unit) The rectified linear unit (ReLU)
is defined elementwise as:

ReLU(s) =max(0, s) (E.5.6)

We will have more to say on the ReLU in the next chapter. For now, we focus on
analyzing some training and approximation properties of this class of models.

A note on terminology

As we already mentioned, neural networks have a long history and a long
baggage of terminology, which we briefly summarize here. Each fi is called a
layer of the model, with fl being the output layer, fi, i = 1, . . . , l−1 the hidden
layers and, with a bit of notational overloading, x being the input layer. With
this terminology, we can restate the definition of the fully-connected layer in
batched form below.

Definition D.5.2 (Fully-connected layer) For a batch of n vectors, each of
size c, represented as a matrix X ∼ (n, c), a fully-connected (FC) layer is
defined as:

FC(X) = φ (XW+ b) (E.5.7)

The parameters of the layer are the matrix W ∼ (c′, c) and the bias vector
b ∼ (c′), for a total of (c′ + 1)c parameters (assuming φ does not have pa-
rameters). Its hyper-parameters are the width c′ and the non-linearity φ.
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class FullyConnectedLayer(nn.Module):
def __init__(self, c: int, cprime: int):
super().__init__()
# Initialize the parameters
self.W = nn.Parameter(torch.randn(c, cprime))
self.b = nn.Parameter(torch.randn(1, cprime))

def forward(self, x):
return relu(x @ self.W + self.b)

Box C.5.1: The FC layer in (E.5.7) implemented as an object in PyTorch. We require a
special syntax to differentiate trainable parameters, such as W, from other non-trainable
tensors: in PyTorch, this is obtained by wrapping the tensors in a Parameter object. Py-
Torch also has its collection of layers in torch.nn, including the FC layer (implemented
as torch.nn.Linear.

The outputs fi(x) are called the activations of the layer, where we can some-
times distinguish between the pre-activation and the post-activation (before
and after the non-linearity). The non-linearity φ itself can be called the acti-
vation function. Each output of fi is called a neuron. Although much of this
terminology is outdated, it is still pervasive and we will use it when needed.

The size of the each layer (the shape of the output) is an hyperparameter that
can be selected by the user, as it only influences the input shape of the next
layer, which is known as the width of the layer. For a large number of layers,
the number of hyperparameters grows linearly and their selection becomes a
combinatorial task. We will return on this point in Chapter 9, when we discuss
the design of models with several dozens (or hundreds) of layers.

The layer concept is also widespread in common frameworks. A layer such
as (E.5.7) can be defined as an object having two functions: an initialization
function that randomly initializes all parameters of the model based on the
selected hyper-parameters, and a call function that provides the output of the
layer itself. See Box C.5.1 for an example. Then, a model can be defined by
chaining together instances of such layers. For example, in PyTorch this can be
achieved by the Sequential object:
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78 Composition and hidden layers

model = nn.Sequential(
FullyConnectedLayer(3, 5),
FullyConnectedLayer(5, 4)

)

Note that from the point of view of their input-output signature, there is no
great difference between a layer as defined in Box C.5.1 and a model as defined
above, and we could equivalently use model as a layer of a larger one. This
compositionality is a defining characteristic of modern neural networks.

5.2.1 On the approximation power of neural networks

Training MLPs proceeds similarly to what we discussed for linear models. For
example, for a regression task, we can minimize the mean-squared error:

min
{Wk ,bk}

l
k=1

1
n

∑

i

(yi − f (xi))
2

where the minimization is now done on all parameters of the model simul-
taneously. We will see in the next lecture a general procedure to compute
gradients in this case. For now, we note that the main difference with respect
to having a linear model is that adding an hidden layer makes the overall op-
timization problem non-convex, with multiple local optima depending on the
initialization of the model. This is an important aspect historically, as alterna-
tive approaches to supervised learning (e.g., support vector machines) provide
non-linear models while remaining in a convex setting. One realization of the
last 10 years is that this problem does not seem to impact too much the results,
and highly non-convex models can achieve significantly good performance in
many tasks.

From a theoretical perspective, we can ask what is the significance of having
added hidden layers, i.e., if linear models can only solve tasks which are lin-
early separable, what is instead the class of functions that can be approximated
by adding hidden layers? As it turns out, having a single hidden layer is enough
to have universal approximation capabilities. A seminal result in this sense
was proved by G. Cybenko in 1989 [Cyb89].
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Theorem 5.1 (Universal approximation of MLPs [Cyb89]) Given a con-
tinuous function g : Rd → R, we can always find a model f (x) of the form
(E.5.4) (an MLP with a single hidden layer) and sigmoid activation functions,
such that for any ϵ > 0:

| f (x)− g(x)| ≤ ϵ , ∀x

In other words, one-hidden-layer MLPs are “dense” in the space of continuous
functions.

The beauty of this theorem should not distract from the fact that this is a purely
theoretical construct, that makes use of the fact that the width of the hidden
layer of the model can grow without bounds. Hence, for any x for which the
previous inequality does not hold, we can always add a new unit to reduce the
approximation error (see Appendix B). In fact, it is possible to devise classes
of functions on which the required number of hidden neurons grows exponen-
tially in the number of input features [B+09].2

Many other authors, such as [Hor91], have progressively refined this result to
include models with fundamentally any possible activation function, including
ReLUs. In addition, universal approximation can also be proved for models
having finite width but possibly infinite depth [LPW+17]. A separate line of
research has investigated the approximation capabilities of overparameterized
models, in which the number of parameters exceeds the training data. In this
case, training to a global optimum can be proved in many interesting scenarios
[DZPS18, AZLL19] (informally, for sufficiently many parameters, the model
can achieve the minimum of the loss on each training sample and, hence, the
global minimum of the optimization problem). See Appendix B for a one-
dimensional visualization of Cybenko’s theorem.

Approximation and learning capabilities of differentiable models are immense
fields of study, with countless books devoted to them, and we have only men-
tioned some significant results here. In the rest of the book, we will be mostly
concerned with the effective design of the models themselves, whose behavior
can be more complex and difficult to control (and design) than these theorems
suggest.

2One of this problems, the parity problem, is closely connected to the XOR task: https:

//blog.wtf.sg/posts/2023-02-03-the-new-xor-problem/.
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80 Stochastic optimization

5.3 Stochastic optimization

To optimize the models we can perform gradient descent on the corresponding
empirical risk minimization problem. However, this can be hard to achieve
when n (the size of the dataset) grows very large. We will see in the next
chapter that computing the gradient of the loss requires a time linear in the
number of examples, which becomes unfeasible or slow for n in the order of
104 or more, especially for large models (memory issues aside).

Fortunately, the form of the problem lends itself to a nice approximation, where
we use subsets of the data to compute a descent direction. To this end, suppose
that for iteration t of gradient descent we sample a subsetBt ⊂ Sn of r points
(with r ≪ n) from the dataset, which we call a mini-batch. We can compute
an approximated loss by only considering the mini-batch as:

eLt =
1
r

∑

(x i ,yi)∈Bt

l(yi, f (x i))≈
1
n

∑

(x i ,yi)∈Sn

l(yi, f (x i)) (E.5.8)

Mini-batch Full dataset

If we assume the elements in the mini-batch are sampled i.i.d. from the dataset,
eLt is a Monte Carlo approximation of the full loss, and the same holds for its
gradient. However, its computational complexity grows only with r, which can
be controlled by the user. Roughly speaking, lower dimensions r of the mini-
batch result in faster iterations with higher gradient variance, while higher
r results in slower, more precise iterations. For large models, memory is in
general the biggest bottleneck, and the mini-batch size r can be selected to fill
up the available hardware for each iteration.

Gradient descent applied on mini-batches of data is an example of stochas-
tic gradient descent (SGD). Due to the properties discussed above, SGD can
be proven to converge to a minimum in expectation, and it is the preferred
optimization strategy when training neural networks.

The last remaining issue is how to select the mini-batches. For large datasets,
sampling elements at random can be expensive, especially if we need to move
them back and forth from the GPU memory. An intermediate solution that
lends itself to easier optimization is the following:
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1 2 b

Epoch

Shuffle

Dataset

SGD
Step 1

SGD
Step 2

SGD
Step 2

Repeat

Shuffled dataset

Build mini-batches

Figure F.5.2: Building the mini-batch sequence: after shuffling, stochastic optimization
starts at mini-batch 1, which is composed of the first r elements of the dataset. It proceeds
in this way to mini-batch b (where b = n

r , assuming the dataset size is perfectly divisible
by r). After one such epoch, training proceed with mini-batch b + 1, which is composed
of the first r elements of the shuffled dataset. The second epoch ends at mini-batch 2b,
and so on.

1. Begin by shuffling the dataset.

2. Then, subdivide the original dataset into mini-batches of r consecutive
elements and process each of them sequentially. Assuming a dataset of
size n = r b, this results in b mini-batches and hence b steps of SGD.
If we are executing the code on a GPU, this step includes sending the
mini-batch to the GPU memory.

3. After completing all mini-batches constructed in this way, return to point
1 and iterate.

One complete loop of this process is called an epoch of training, and it is a very
common hyper-parameter to specify (e.g., for a dataset of 1000 elements and
mini-batches of 20 elements, “training for 5 epochs” means training for 250 iter-
ations). The expensive shuffling operation is only done once per epoch, while
in-between an epoch mini-batches can be quickly pre-fetched and optimized by
the framework. This is shown schematically in Figure F.5.2. Most frameworks
provide a way to organize the dataset into elements that can be individually
indexed, and a separate interface to build the mini-batch sequence. In Py-
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# A dataset composed by two tensors
dataset = torch.utils.data.TensorDataset(

torch.randn(1000, 3), torch.randn(1000, 1))

# The data loader provides shuffling and mini-batching
dataloader = torch.utils.data.DataLoader(dataset,

shuffle=True, batch_size=32)

for xb, yb in dataloader:
# Iterating over the mini-batch sequence (one epoch)
# xb has shape (32, 3), yb has shape (32, 1)

Box C.5.2: Building the mini-batch sequence with PyTorch’s data loader: all frameworks
provide similar tools.

Torch, for example, this is done by the Dataset and DataLoader interfaces,
respectively - see Box C.5.2.

This setup also leads itself to a simple form of parallelism across GPUs or across
machines. If we assume each machine is large enough to hold an entire copy of
the model’s parameters, we can process different mini-batches in parallel over
the machines and then sum their local contributions for the final update, which
is then broadcasted back to each machine. This is called a data parallel setup
in PyTorch,3 and it is shown visually in Figure F.5.3. More complex forms of
parallelism, such as tensor parallelism, are also possible, but we do not cover
them in this book.

5.4 Activation functions

We close the chapter by providing a brief overview on the selection of activa-
tion functions. As we stated in the previous section, almost any element-wise
non-linearity is theoretically valid. However, not all choices have good per-
formance. As an example, consider a simple polynomial function, for some
user-defined positive integer p:

φ(s) = sp

3https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
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Dataset 
(main memory)

GPU 2

GPU 1

Compute
gradient

Compute
gradient

Aggregate gradients
and broadcast back the

parameters

Figure F.5.3: A simple form of distributed stochastic optimization: we process one mini-
batch per available machine or GPU (by replicating the weights on each of them) and
sum or average the corresponding gradients before broadcasting back the result (which
is valid due to the linearity of the gradient operation). This requires a synchronization
mechanism across the machines or the GPUs.

For large p, this will grow rapidly on both sides, compounding across layers and
resulting in networks which are hard to train and with numerical instabilities.

Historically, neural networks were introduced as approximate models of bio-
logical neurons (hence, the name artificial NNs). In this sense, the weights
w⊤ in the dot product w⊤x were simple models of synapses, the bias b was
a threshold, and the neuron was “activated” when the cumulative sum of the
inputs surpassed the threshold:

s =w⊤x− b , φ(s) = Is≥0

where Ib is an indicator function which is 1 when b is true, 0 otherwise. Be-
cause this activation function is non-differentiable, the sigmoid σ(s) can be
used as a soft-approximation. In fact, we can define a generalized sigmoid
function with a tunable slope a as σa(s) = σ(as), and we have:

lim
a→∞

σa(s) = Is≥0

Another common variant was the hyperbolic tangent, which is a scaled version
of the sigmoid in [−1,+1]:

tanh(s) = 2σ(s)− 1

Modern neural networks, popularized by AlexNet in 2012 [KSH12], have in-
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stead used the ReLU function in (E.5.6). The relative benefits of ReLU with
respect to sigmoid-like functions will be discussed in the next chapter. We note
here that ReLUs have several counter-intuitive properties. For example, they
have a point of non-differentiability in 0, and they have a large output sparsity
since all negative inputs are set to 0. This second property can result in what
is known as “dead neurons”, wherein certain units have a constant 0 output
for all inputs. This can be solved by a simple variant of ReLU, known as Leaky
ReLU:

LeakyReLU(s) =

¨

s if s ≥ 0

αs otherwise
(E.5.9)

for a very small α, e.g., α= 0.01. We can also train a different α for each unit
(as the function is differentiable with respect to α). In this case, we call the AF
a parametric ReLU (PReLU) [HZRS15]. Trainable activation functions are, in
general, an easy way to add a small amount of flexibility with a minor amount
of parameters – in the case of PReLU, one per neuron.

Fully-differentiable variants of ReLU are also available, such as the softplus:

softplus(s) = log(1+ exp(s)) (E.5.10)

The softplus does not pass through the origin and it is always greater than 0.
Another variant, the exponential linear unit (ELU), preserves the passage at
the origin while switching the lower bound to −1:

ELU(s) =

¨

s if s ≥ 0

exp(s− 1) otherwise
(E.5.11)

Yet another class of variants can be defined by noting the similarity of ReLU
with the indicator function. We can rewrite the ReLU as:

ReLU(s) = sIs≥0

Hence, ReLU is identical to the indicator function on the negative quadrant,
while replacing 1 with s on the positive quadrant. We can generalize this by
replacing the indicator function with a weighting factor β(s):

GeneralizedReLU(s) = β(s)s
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Figure F.5.4: Visual comparison of ReLU and four variants: LeakyReLU (E.5.9), Soft-
plus (E.5.10), ELU (E.5.11), and GELU. LeakyReLU is shown with α = 0.1 for better
visualization, but in practice α can be closer to 0 (e.g., 0.01)..

Choosing β(s) as the cumulative Gaussian distribution function, we obtain the
Gaussian ELU (GELU) [HG16], while for β(s) = σ(s) we obtain the sigmoid
linear unit (SiLU) [HG16], also known as the Swish [RZL17]. We plot some
of these AFs in Figure F.5.4. Apart from some minor details (e.g., monotonicity
in the negative quadrant), they are all relatively similar, and it is in general
very difficult to obtain a significant boost in performance by simply replacing
the activation function.

Multiple trainable variants of each function can be obtained by adding train-
able parameters to the functions. For example, a common trainable variant of
the Swish with four parameters {a, b, c, d} is obtained as:

Trainable-Swish(s) = σ(as+ b)(cs+ d) (E.5.12)

We can also design non-parametric activation functions, in the sense of acti-
vation functions that do not have a fixed number of trainable parameters. For
example, consider a generic set of (non-trainable) scalar functions φi indexed
by an integer i. We can build a fully flexible activation function as a linear
combination of such bases:

φ(s) =
s
∑

i=1

αiφi(s) (E.5.13)

where s is an hyper-parameter, while the coefficients αi are trained by gradi-
ent descent. They can be the same for all functions, or different for each layer
and/or neuron. Based on the choice of φi we obtain different classes of func-
tions: if each φi is a ReLU we obtain the adaptive piecewise linear (APL)
function [AHSB14], while for more general kernels we obtain the kernel acti-
vation function (KAF) [MZBG18, SVVTU19]. Even more general models can
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be obtained by considering functions with multiple inputs and multiple outputs
[LCX+23]. See [ADIP21] for a survey.

In general, there is no answer to the question of “what is the best AF”, as it de-
pends on the specific problem, dataset, and architecture. Apart from its perfor-
mance, ReLU is a common choice also because highly optimized code kernels
are available and it adds a minor overhead to the network’s cost. When design-
ing AFs, it is important to consider the fundamental computational trade-off
that, for a given budget, more complex AFs can result in having smaller width
or smaller depth, potentially hindering the performance of the entire architec-
ture. For this reason, AFs with a lot of trainable parameters are less common.

Design variants

Not every layer fits into the framework of linear projections and element-
wise non-linearities. For example, the gated linear unit (GLU) [DFAG17]
combines the structure of (E.5.12) with multiplicative (Hadamard) inter-
actions:

f (x) = σ (W1x)⊙ (W2x) (E.5.14)

where W1 and W2 are trained. Another common variant, the SwiGLU,
replaces the sigmoid in (E.5.14) with a Swish function [Sha20]. Yet an-
other design, in a maxout network [GWFM+13] each unit produces the
maximum of k (hyper-parameter) different projections. We will discuss
some alternative designs later on in the book.
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About this chapter

The previous chapter highlighted the need for an efficient, automatic pro-
cedure to compute gradients of any possible sequence of operations. In
this chapter we describe such a method, called back-propagation in the
neural network’s literature or reverse-mode automatic differentiation
in the computer science one. Its analysis has several insights, ranging
from the model’s choice to the memory requirements for optimizing it.

6.1 Problem setup

We consider the problem of efficiently computing gradients of generic com-
putational graphs, such as those induced by optimizing a scalar loss function
on a fully-connected neural network, a task called automatic differentiation
(AD) [BPRS18]. You can think of a computational graph as the set of atomic
operations (which we call primitives) obtained by running the program itself.
We will consider sequential graphs for brevity, but everything can be easily
extended to more sophisticated, acyclic computational graphs.

The problem may seem trivial, since the chain rule of Jacobians (Section 2.2,
(E.2.22)) tells us that the gradient of function composition is simply the matrix
product of the corresponding Jacobian matrices. However, efficiently imple-
menting this is the key challenge, and the resulting algorithm (reverse-mode
AD or backpropagation) is a cornerstone of neural networks and differen-
tiable programming in general [GW08, BR24]. Understanding it is also key to
understanding the design (and the differences) of most frameworks for imple-
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menting and training such programs (such as TensorFlow or PyTorch or JAX).
A brief history of the algorithm can be found in [Gri12].

To setup the problem, we assume we have at our disposal a set of primitives:

y= fi(x,wi)

Each primitive represents an operation on an input vector x ∼ (ci), parame-
terized by the vector wi ∼ (pi) (e.g., the weights of a linear projection), and
giving as output another vector y∼ (c′i).

There is a lot of flexibility in our definition of primitives, which can represent
basic linear algebra operations (e.g., matrix multiplication), layers in the sense
of Chapter 5 (e.g., a fully-connected layer with an activation function), or even
larger blocks or networks. This recursive composability is a key property of
programming and extends to our case.

We only assume that for each primitive, we know how to compute two quan-
tities, which we call the input Jacobian and the weight Jacobian:

∂x [ f (x,w)]∼ (c′, c) , ∂w [ f (x,w)]∼ (c′, p)

On our notation and higher-order Jacobians

Importantly, we only consider vector-valued quantities for readability, as all
resulting gradients are matrices. In practice, existing primitives may have in-
puts, weights, or outputs of higher rank. For example, consider a basic fully-
connected layer on a mini-batched input:

f (X,W) = XW+ b

In this case, the input X has shape (n, c), the weights have shape (c, c′) and (c′)
(with c′ a hyper-parameter), and the output has shape (n, c′). Hence, the input
Jacobian has shape (n, c′, n, c), and the weight Jacobian has shape (n, c′, c, c′),
both having rank 4.

In our notation, we can consider the equivalent flattened vectors x = vect(X)
and w = [vect(W);b], and our resulting “flattened” Jacobians have shape
(nc′, nc) and (nc′, cc′) respectively. This is crucial in the following, since ev-
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ery time we refer to “the input size c” we are referring to “the product of all
input shapes”, including eventual mini-batching dimensions. This also shows
that, while we may know how to compute the Jacobians, we may not wish to
fully materialize them in memory due to their large dimensionality.

As a final note, our notation aligns with the way these primitives are imple-
mented in a functional library, such as JAX. In an object-oriented framework
(e.g., TensorFlow, PyTorch), we saw that layers are implemented as objects
(see Box C.5.1 in the previous chapter), with the parameters being a prop-
erty of the object, and the function call being replaced by an object’s method.
This style simplifies certain practices, such as deferred initialization of all pa-
rameters until the input shapes are known (lazy initialization), but it adds a
small layer of abstraction to consider to translate our notation into workable
code. As we will see, these differences are reflected in turn in the way AD is
implemented in the two frameworks.

6.1.1 Automatic differentiation: problem statement

With all these details out of the way, we are ready to state the AD task. Consider
a sequence of l − 1 primitive calls, followed by a final summation:

h1 = f1(x,w1) (E.6.1)

h2 = f2(h1,w2) (E.6.2)
... (E.6.3)

hl−1 = fl−1(hl−2,wl−1) (E.6.4)

y =
∑

hl−1 (E.6.5)

This is called an evaluation trace of the program. Roughly, the first l − 2
operations can represent several layers of a neural network, operation l − 1 is
a per-input loss (e.g., cross-entropy), and the final operation sums the losses of
the mini-batch. Hence, the output of our program is always a scalar, since we
require it for numerical optimization. Let us abbreviate the previous program
as F(x). The AD task is to simultaneously and efficiently compute all weight
Jacobians of the program given knowledge of the computational graph and all
individuals input and weight Jacobians:

AD(F(x)) =
�

∂wi
y
	l−1

i=1
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import sympy as sp
x, a, b = sp.symbols('x a b')
y = a*sp.sin(x) + b*x*sp.sin(x)
sp.diff(y, x) # [Out]: acos(x)+bxcos(x)+bsin(x)

Box C.6.1: Symbolic differentiation in Python using SymPy.

As we will see, there are two major classes of AD algorithms, called forward-
mode and backward-mode, corresponding to a different ordering in the com-
position of the individual operations. We will also see that the backward-mode
(called back-propagation in the neural networks’ literature) is significantly
more efficient in our context. While we focus on a simplified scenario, it is rel-
atively easy to extend our derivation to acyclic graphs of primitives (as already
mentioned), and also to situations where parameters are shared across layers
(weight sharing). We will see an example of weight sharing in Chapter 13.

6.1.2 Numerical and symbolic differentiation

Before moving on to forward-mode AD, we comment on the difference between
AD and other classes of algorithms for differentiating functions. First, we could
directly apply the definition of gradients (Section 2.2) to obtain a suitable nu-
merical approximation of the gradient. This process is called numerical differ-
entiation. However, each scalar value to be differentiated requires 2 function
calls in a naive implementation, making this approach unfeasible except for
numerical checks over the implementation.

Next, consider this simple function:

f (x) = a sin(x) + bx sin(x)

We can ask a symbolic engine to pre-compute the full, symbolic equation of
the derivative. This is called symbolic differentiation and shown in Python
in Box C.6.1.

In a realistic implementation, the intermediate value h= sin(x)would be com-
puted only once and stored in an intermediate variable, which can also be
reused for the corresponding computation in the gradient trace (and a similar
reasoning goes for the cos(x) term in the derivative). This is less trivial than it
appears: finding an optimal implementation for the Jacobian which avoids any
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unnecessary computation is an NP-complete task (optimal Jacobian accumu-
lation). However, we will see that we can exploit the structure of our program
to provide a suitably efficient implementation of AD that is significantly bet-
ter than a symbolic approach like the above (and it is, in fact, equivalent to a
symbolic approach allowing for the presence of subsequences [Lau19]).

6.2 Forward-mode automatic differentiation

We begin by recalling the chain rule of Jacobians. Consider a combination of
two primitive functions:

h= f1(x) , y= f2(h)

In terms of their gradients, we have:

∂x y= ∂h y · ∂x h

If x, h, and y have dimensions a, b, and c respectively, the previous Jacobian
requires the multiplication of a c× b matrix with a b×a one. We can interpret
the rule as follows: if we have already computed f1 and its Jacobian (the red
term above), once we apply f2 we can “update” the gradient by multiplying
with the corresponding Jacobian (the green term above).

We can immediately apply this insight to obtain a working algorithm called
forward-mode automatic differentiation (F-AD). The idea is that every time
we apply a primitive function, we initialize its corresponding weight Jacobian
(called tangent in this context), while simultaneously updating all previous
tangent matrices. Let us see a simple worked-out example to illustrate the
main algorithm.

Consider the first instruction, h1 = f1(x,w1), in our program. Because nothing
has been stored up to now, we initialize the tangent matrix for w1 as its weight
Jacobian:

ÒW1 = ∂w1
h1

We now proceed to the second instruction, h2 = f2(h1,w2). We update the
previous tangent matrix while simultaneously initializing the second one:
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92 Forward-mode automatic differentiation

ÒW1 ←
�

∂h1
h2

�

ÒW1

ÒW2 = ∂w2
h2

Input Jacobian of f2Updated tangent matrix for w1

The update requires the input Jacobian, while the second term requires the
weight Jacobian of the operation. Abstracting away, consider the generic i-th
primitive given by hi = fi(hi−1,wi). We initialize the tangent matrix for wi

while simultaneously updating all previous matrices:

ÒW j ←
�

∂hi−1
hi

�

ÒW j ∀ j < i
ÒWi = ∂wi

hi

The red term (the input Jacobian) is shared for all previous tangents. The last
operation in the program is a sum, and the corresponding gradient gives us the
output of the algorithm:

∇wi
y = ÒW⊤

i 1 ∀i

Done! Let us analyze the algorithm in more detail. First, all the operations
we listed can be easily interleaved with the original program, meaning that the
space complexity will be roughly proportional to the space complexity of the
program we are differentiating.

On the negative side, the core operation of the algorithm (the update of ÒWi)
requires a multiplication of two matrices, generically shaped (c′i , ci) and (ci, p j),
where ci, c′i are input/output shapes, and p j is the shape of w j. This is an ex-
tremely expensive operation: for example, assume that inputs and outputs are
both shaped (n, d), where n is the mini-batch dimension and d the input/out-
put features. Then, the matrix multiplication will have complexity O (n2d2p j),
which is quadratic in both mini-batch size and feature dimensionality. This
can easily become unfeasible, especially for high-dimensional inputs such as
images.

We can obtain a better trade-off by noting that the last operation of the algo-
rithm is a simpler matrix-vector product, which is a consequence of having a
scalar output. This is explored in more detail in the next section.
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6.3 Reverse-mode automatic differentiation

To proceed, we unroll the computation of a single gradient term corresponding
to the i-th weight matrix:

∇⊤wi
y = 1⊤

�

∂hl
hl−1

� �

∂hl−1
hl−2

�

· · ·
�

∂hi+1
hi

��

∂wi
hi

�

(E.6.6)

Remember that, notation apart, (E.6.6) is just a potentially long series of matrix
multiplications, involving a constant term (a vector 1 of ones), a series of input
Jacobians (the red term) and a weight Jacobian of the corresponding weight
matrix (the green term). Let us define a shorthand for the red term:

ehi = 1⊤
l
∏

j=i+1

∂hi−1
hi (E.6.7)

Because matrix multiplication is associative, we can perform the computations
in (E.6.6) in any order. In F-AD, we proceeded from the right to the left, since
it corresponds to the ordering in which the primitive functions were executed.
However, we can do better by noting two interesting aspects:

1. The leftmost term in (E.6.6) is a product between a vector and a matrix
(which is a consequence of having a scalar term in output), which is
computationally better than a product between two matrices. Its output
is also another vector.

2. The term in (E.6.7) (the product of all input Jacobians from layer i to
layer l) can be computed recursively starting from the last term and it-
eratively multiplying by the input Jacobians in the reverse order.

We can put together these observations to develop a second approach to au-
tomatic differentiation, that we call reverse-mode automatic differentiation
(R-AD), which is outlined next.

1. Differently from F-AD, we start by executing the entire program to be
differentiated, storing all intermediate outputs.

2. We inizialize a vector ehl+1 = 1, which corresponds to the leftmost term
in (E.6.6).
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94 Reverse-mode automatic differentiation

3. Going in reverse order, i = l, l − 1, . . . , 2, we first compute the gradient
with respect to the i-th weight matrix as:

∂ ⊤wi
y = eh⊤i+1∂wi

hi

which is the i-th gradient we need. Next, we update our “back-propagated”
input Jacobian as:

ehi = eh
⊤
i+1∂hi−1

hi

Steps (1)-(3) describe a program which is roughly symmetrical to the original
program, that we call the dual or reverse program. The terms ehi are called
the adjoints and they store (sequentially) all the gradients of the output with
respect to the variables h1,h2, . . . ,hl−1 in our program.1

In the terminology of neural networks, we sometimes say that the original
(primal) program is a forward pass (not to be confused with forward-mode),
while the reverse program is a backward pass. Differently from F-AD, in R-AD
the full primal program must be executed before the reverse program can be
run, and we need to some specialized mechanisms to store all intermediate
outputs to “unroll” the computational graph. Different frameworks implement
this differently, as outlined next.

Computationally, R-AD is significantly more efficient that F-AD. In particular,
both operations in step (3) of R-AD are vector-matrix products scaling only
linearly in all shape quantities. The tradeoff is that executing R-AD requires a
large amount of memory, since all intermediate values of the primal program
must be stored on disk with a suitable strategy. Specific techniques, such as
gradient checkpointing, can be used to improve on this tradeoff by increas-
ing computations and partially reducing the memory requirements. This is
done by only storing a few intermediate outputs (called checkpoints) while
recomputing the remaining values during the backward pass. See Fig. F.6.1
for a visualization.

1Compare this with F-AD, where the tangents represented instead the gradients of the hi
variables with respect to the weights.
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(a) (b) (c) (d)

Figure F.6.1: An example of gradient checkpointing. (a) We execute a forward pass,
but we only store the outputs of the first, second, and fourth blocks (checkpoints). (b) The
backward pass (red arrows) stops at the third block, whose activations are not available.
(c) We run a second forward pass starting from the closest checkpoint to materialize again
the activations. (d) We complete the forward pass. Compared to a standard backward
pass, we required one-fourth more computations. In general, the less checkpoints are
stored, the higher the computational cost of the backward pass.

6.4 Practical considerations

6.4.1 Vector-Jacobian products

Looking at step (3) in the R-AD algorithm, we can make an interesting obser-
vation: the only operation we need is a product between a transposed vector
v and a Jacobian of f (either the input or the weight Jacobian). We call these
two operations the vector-Jacobian products (VJPs) of f .2

Definition D.6.1 (Vector-Jacobian product (VJP)) Given a function y =
f (x), with x∼ (c) and y∼ (c′), its VJP is another function defined as:

vjp f (v) = v⊤∂ f (x) (E.6.8)

where v ∼ (c′). If f has multiple parameters f (x1, . . . ,xn), we can define n
individual VJPs denoted as vjp f ,x1

(v), ..., vjp f ,xn
(v).

In particular, in our case we can define two types of VJPs, corresponding to the

2By contrast, F-AD can be formulated entirely in terms of the transpose of the VJP, called
a Jacobian-vector product (JVP). For a one-dimensional output, the JVP is the directional
derivative (E.2.19) from Section 2.2. Always by analogy, the VJP represents the application of
a linear map connected to infinitesimal variations of the output of the function, see [BR24].
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96 Practical considerations

Figure F.6.2: For performing R-AD,
primitives must be augmented with
two VJP operations to be able to per-
form a backward pass, correspond-
ing to the input VJP (E.6.9) and the
weight VJP (E.6.10). One call for
each is sufficient to perform the back-
ward pass through the primitive, cor-
responding to (E.6.11)-(E.6.12).

Forward pass

Backward pass

input and the weight argument respectively:

vjp f ,x(v) = v⊤∂x f (x,w) (E.6.9)

vjp f ,w(v) = v⊤∂w f (x,w) (E.6.10)

We can now rewrite the two operations in step (3) of the R-AD algorithm as
two VJP calls of the primitive function with the adjoint values (ignoring the i
indices for readability), corresponding to the adjoint times the weight VJP, and
the adjoint times the input VJP:

∂ ⊤w y = vjp f ,w(eh) (E.6.11)

eh← vjp f ,h(eh) (E.6.12)

Hence, we can implement an entire automatic differentiation system by first
choosing a set of primitives operations, and then augmenting them with the
corresponding VJPs, without having to materialize the Jacobians in memory at
any point. This is shown schematically in Figure F.6.2.

In fact, we can recover the Jacobians’ computation by repeatedly calling the
VJPs with the basis vectors e1, . . . ,en, to generate them one row at a time, e.g.,
for the input Jacobian we have:

∂x f (x,w) =









vjp f ,x(e1)
vjp f ,x(e2)

...
vjp f ,x(en)









To understand why this reformulation can be convenient, let us look at the
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VJPs of a fully-connected layer, which is composed of linear projections and
(elementwise) non-linearities. First, consider a simple linear projection with
no bias:

f (x,W) =Wx

The input Jacobian here is simply W, but the weight Jacobian is a rank-3 tensor
(Section 2.2). By comparison, the input VJP has no special structure:

vjp f ,x(v) = v⊤W⊤ = [Wv]⊤ (E.6.13)

The weight VJP, instead, turns out to be a simple outer product, which avoids
rank-3 tensors completely:

vjp f ,w(v) = vx⊤ (E.6.14)

Working out the JVP

To compute (E.6.14), we can write y = v⊤Wx =
∑

i

∑

j Wi j vi x j, from

which we immediately get ∂ y
∂Wi j
= vi x j, which is the elementwise definition

of the outer product.

Hence, every time we apply a linear projection in the forward pass, we modify
the back-propagated gradients by the transpose of its weights, and we perform
an outer product to compute the gradient of W.

Consider now an element-wise activation function with no trainable parame-
ters, e.g., the ReLU:

f (x, {}) = φ(x)

Because we have no trainable parameters, we need only consider the input VJP.
The gradient is a diagonal matrix having as elements the derivatives of φ:

[∂xφ(x)]ii = φ
′(x i)

The input VJP is a multiplication of a diagonal matrix by a vector, which is
equivalent to an Hadamard product (i.e., a scaling operation):

vjpx( f ,v) = v⊙φ′(x) (E.6.15)

Interestingly, also in this case we can compute the VJP without having to ma-
terialize the full diagonal matrix.
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# Original function (sum-of-squares)
def f(x: Float[Array, "c"]):

return (x**2).sum()

grad_f = func.grad(f)
print(grad_f(torch.randn(10)).shape)
# [Out]: torch.Size([10])

Box C.6.2: Gradient computation as a higher-order function. The torch.func
interface replicates the JAX API. In practice, the function can be traced (e.g., with
torch.compile) to generate an optimized computational graph.

6.4.2 Implementing an R-AD system

There are many ways to implement the R-AD system, ranging form Wengert
lists (as done in TensorFlow) to source-to-source code transformations [GW08].
Here, we discuss briefly some common implementations in existing frame-
works.

First, describing primitives as functions with two arguments f (x,w) aligns with
functional frameworks such as JAX, where everything is a function. Consider
a function f (x) with a c-dimensional input and a c′-dimensional output. From
this point of view, a VJP can be implemented as a higher-order function with
signature:

(Rc → Rc′)→ Rc → (Rc′ → Rc) (E.6.16)

i.e., given a function f and an input x′, a VJP returns another function that
can be applied to a c′-dimensional vector v to return v⊤∂ f (x′). Similarly, the
gradient for a one-dimensional function can be implemented as another higher-
order function with signature:

(Rc → R)→ (Rc → Rc) (E.6.17)

taking as input the function f (x) and returning another function that computes
∇ f (x). In JAX, these ideas are implemented in the functions jax.grad and
jax.jvp respectively, which is also replicated in PyTorch in the torch.func

module - see Box C.6.2 for an example.3

3Many operations, such as computing an Hessian, can be achieved by smartly compos-
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data

grad

grad_fn

data

grad

grad_fn

requires_grad=True requires_grad=False

backward()

jvp(...)

data

grad

grad_fn

requires_grad=True

Tensor data

Gradient data

Pointer for
computational graph

Figure F.6.3: Left: in PyTorch, a tensor is augmented with information about its gra-
dient (empty at initialization), and about the operation that created it. Right: dur-
ing a backward pass, the grad_fn property is used to traverse the computational
graph in reverse, and gradients are stored inside the tensor’s grad property whenever
requires_grad is explicitly set to True (to avoid consumming unnecessary mem-
ory).

As we mentioned, in practice our models are implemented as compositions
of objects whose parameters are encapsulated as properties (Box C.5.1). One
possibility is to “purify” the object to turn it into a pure function, e.g.:4

# Extract the parameters
params = dict(model.named_parameters())
# Functional call over the model's forward function
y = torch.func.functional_call(model, params, x)

More in general, frameworks like PyTorch are augmented with techniques to
explicitly handle this scenario directly, without introducing intermediate oper-
ations. In PyTorch, for example, tensors’ objects are augmented with informa-
tion about the operation that generated them (Figure F.6.3, left). Whenever a
backward() call is requested on a scalar value, these properties are used to
traverse the computational graph in reverse, storing the corresponding gradi-
ents inside the tensors that requires them (Figure F.6.3, right).

This is just a high-level overview of how these systems are implemented in
practice, and we are leaving behind many details, for which we refer to the
official documentations.5

ing JVPs and VJPs based on their signatures: https://jax.readthedocs.io/en/latest/

notebooks/autodiff_cookbook.html.
4https://sjmielke.com/jax-purify.htm
5I definitely suggest trying to implement an R-AD system from scratch: many didactical
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6.4.3 Choosing an activation function

Coincidentally, we can now motivate why ReLU is a good choice as activation
function. A close look at (E.6.15) tells us that every time we add an activation
function in our model, the adjoints in the backward pass are scaled by a factor
of φ′(x). For networks with many layers, this can give rise to two pathological
behaviors:

1. If φ′(·)< 1 everywhere, there is the risk of the gradient being shrank to
0 exponentially fast in the number of layers. This is called the vanishing
gradient problem.

2. Conversely, if φ′(·)> 1 everywhere, the opposite problem appears, with
the gradients exponentially converging to infinity in the number of lay-
ers. This is called the exploding gradient problem.

These are serious problems in practice, because libraries represent floating
point numbers with limited precision (typically 32 bits or lower), meaning that
underflows or overflows can manifest quickly when increasing the number of
layers.

In fact, a stack of linear layers implemented in floating point precision
is not even linear because of small discontinuities at machine precision!
This is generally not an issue, but it can be exploited to train fully-linear
deep neural networks.6

As an example of how vanishing gradients can appear, consider the sigmoid
function σ(s). We already mentioned that this was a common AF in the past,
due to it being a soft approximation of the step function. We also know that
σ′(s) = σ(s)(1−σ(s)). Combined with the fact that σ(s) ∈ [0,1], we obtain
that:

σ′(s) ∈ [0,0.25]

Hence, the sigmoid is a prime candidate for vanishing gradient issues: see
Figure F.6.4a.

implementations can be found online, such as https://github.com/karpathy/micrograd.
6https://openai.com/research/nonlinear-computation-in-deep-linear-

networks
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Figure F.6.4: (a) Plot of the sigmoid function (red) and its derivative (green). (b) Plot
of ReLU (red) and its derivative (green).

Designing an AF that never exhibits vanishing or exploding gradients is non
trivial, since the only function having φ′(s) = 1 everywhere is a constant func-
tion. We then need a function which is “linear enough” to avoid gradient issues,
but “non-linear” enough to separate the linear layers. The ReLU ends up being
a good candidate since:

∂sReLU(s) =

¨

0 s < 0

1 s > 0

The gradient is either zeroed-out, inducing sparsity in the computation, or
multiplied by 1, avoiding scaling issues - this is shown in Figure F.6.4b.

As a side note, the ReLU’s gradient is identical irrespective of whether we re-
place the input to the ReLU layer with its output (since we are only masking
the negative values while keeping the positive values untouched). Hence, an-
other benefit of using ReLU as activation function is that we can save a small
bit of memory when performing R-AD, by overwriting the layer’s input in the
forward pass without impacting the correctness of the AD procedure: this is
done in PyTorch, for example, by setting the in_place parameter.7

7https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html
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6.4.4 Subdifferentiability and correctness of AD

The next paragraph is a bit more technical and can be skipped on first
reading.

There is a small detail we avoided discussing until now: the ReLU is non-
differentiable in 0, making the overall network non-smooth. What happens
in this case? The “pragmatic” answer is that, by minimizing with stochastic
gradient descent from a random (non-zero) initialization, the probability of
ending up exactly in s = 0 is practically null, while the gradient is defined in
ReLU(ϵ) for any |ϵ|> 0.

For a more technical answer, we can introduce the concept of subgradient of
a function.

Definition D.6.2 (Subgradient) Given a convex function f (x), a subgradi-
ent in x is a point z such that, for all y:

f (y)≥ f (x) + z(y − x)

Note the similarity with the definition of convexity: a subgradient is the slope
of a line “tangent” to f (x), such that the entire f is lower bounded by it. If f
is differentiable in x , then only one such line exists, which is the derivative of
f in x . In a non-smooth point, multiple subgradients exists, and they form a
set called the subdifferential of f in x:

∂x f (x) = {z | z is a subgradient of f (x)}

With this definition in hand, we can complete our analysis of the gradient of
ReLU:

∂sReLU(s) =







{0} s < 0

{1} s > 0

[0, 1] s = 0

Hence, any value in [0, 1] is a valid subgradient in 0, with most implementa-
tions in practice favoring ReLU′(0) = 0. Selecting subgradients at every step
of an iterative descent procedure is called subgradient descent.
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In fact, the situation is even more tricky, because the subgradient need not
be defined for non-convex functions. In that case, one can resort to general-
izations that relax the previous definition to a local neighborhood of x , such
as the Clarke subdifferential.8 Subdifferentiability can also create problems in
AD, where different implementations of the same functions can provide differ-
ent (possibly invalid) subgradients, and more refined concepts of chain rules
must be considered for a formal proof [KL18, BP20].9

8https://en.wikipedia.org/wiki/Clarke_generalized_derivative
9Consider this example reproduced from [BP20]: define two functions, ReLU2(s) =

ReLU(−s) + s and ReLU3(s) = 0.5(ReLU(s) + ReLU2(s)). They are both equivalent to ReLU,
but in PyTorch a backward pass in 0 returns 0 for ReLU, 1.0 for ReLU2, and 0.5 for ReLU3.
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Part II

A strange land

“Curiouser and curiouser!” cried Alice (she was so much

surprised, that for the moment she quite forgot

how to speak good English).

— Chapter 2, The Pool of Tears
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7 | Convolutional layers

About this chapter

In this chapter we introduce our second core layer, the convolutional
layer, which is designed to work with images (or, more in general, se-
quential data of any kind) by exploiting two key ideas that we call local-
ity and parameter sharing. We start by describing the basic building block
before moving to the complete model.

Fully-connected layers are important historically, but less so from a practical
point of view: on unstructured, “tabular” data MLPs are generally outper-
formed by other alternatives, such as random forests or well tuned support
vector machines [GOV22]. This is not true, however, as soon as we consider
more complex types of data, having an inner structure that can be exploited
in the design of the model. In this case, data has to be processed by more
sophisticated blocks before fully-connected layers can be applied.

In this chapter we consider the image domain, but in the next chapters we also
consider applications to time series, audio, graphs, and videos. In all these
cases, the input has a certain structural organization (either temporal, spatial,
or of other type) that can be leveraged to design layers that are both perfor-
mant, easily composable, and highly efficient in terms of parameters. Interest-
ingly, in all these case we will see that possible solutions can be designed by
taking as starting point a fully-connected layer, and then suitably restricting or
generalizing it based on the properties of the input.
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108 Towards convolutive layers

7.1 Towards convolutive layers

7.1.1 Why fully-connected layers are not enough

An image can be described by a tensor X ∼ (h, w, c), where h is the height of the
image, w the width of the image, and c is the number of channels (which can
be 1 for black and white images, 3 for color images, or higher for, e.g., hyper-
spectral images). Hence, a mini-batch of images will generally be of rank 4 with
an additional leading batch dimension (b, h, w, c). The three dimensions are
not identical, since h and w represent a spatial arrangement of pixels, while the
channels c do not have any specific ordering, in the sense that storing images
in an RGB format or a GBR format is only a matter of convention.

On notation, channels, and features

We use the same symbol we used for features in the tabular case (c) be-
cause it will play a similar role in the design of the models, i.e., we can
think of each pixel as described by a generic set of c features which are
updated in parallel by the layers of the model. Hence, the convolutive
layer will return a generic tensor (h, w, c′) with an embedding of size c′

for each of the hw pixels.

In order to use a fully-connected layer, we would need to “flatten” (vectorize)
the image:

h= φ(W · vect(X ) ) (E.7.1)

Flattened image

where vect(x) is equivalent to x.reshape(-1) in PyTorch, and it returns for
a generic rank-n tensor x ∼ (i1, i2, . . . , in) an equivalent tensor x∼

�

∏n
j=1 i j

�

.

Although it should be clear this is an inelegant approach, it is worth empha-
sizing some of its disadvantages. First, we have lost a very important property
from the previous section, namely, composability: our input is an image, while
our output is a vector, meaning we cannot concatenate two of these layers. We
can recover this by reshaping the output vector to an image:

H = unvect(φ(W · vect(X ))) (E.7.2)
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where we assume that the layer does not modify the number of pixels, and
unvect reshapes the output to a (h, w, c′) tensor, with c′ an hyper-parameter.

This leads directly to the second issue, which is that the layer has a huge num-
ber of parameters. Considering, for example, a (1024, 1024) image in RGB,
keeping the same dimensionality in output results in (1024∗1024∗3)2 param-
eters (or (hw)2cc′) in general), which is in the order of 1013! We can interpret
the previous layer as follows: for each pixel, every channel in the output is a
weighted combination of all channels of all pixels in the input image. As we
will see, we can obtain a more efficient solution by restricting this computation.

More on reshaping

In order to flatten (or more in general, reshape) a tensor, we need to de-
cide an ordering in which to process the values. In practice, this is deter-
mined by the way the tensors are stored in memory: in most frameworks,
the tensor’s data is stored sequentially in a contiguous block of memory,
in what is called a strided layout. Consider the following example:

torch.randn(32, 32, 3).stride() # [Out]: (96, 3, 1)

The stride is the number of steps that must be taken in memory to move
of 1 position along that axis, i.e., the last dimension of the tensor is con-
tiguous, while to move of one position in the first dimension we need 96
(32 ∗ 3) steps. This is called a row-major ordering or, in image analysis,
a raster order.a Every reshaping operation works by moving along this
strided representation.

ahttps://en.wikipedia.org/wiki/Raster_scan

As a running example to visualize what follows, consider a 1D sequence x =
�

x1, x2, x3, x4

�

(we will consider 1D sequences more in-depth later on; for now,
you can think of this as “4 pixels with a single channel”). In this case, we do
not need any reshaping operations, and the previous layer (with c′ = 1) can
be written as:







h1

h2

h3

h4






=







W11 W12 W13 W14

W21 W22 W23 W24

W31 W32 W33 W34

W41 W42 W43 W44













x1

x2

x3

x4






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Figure F.7.1: Given a tensor
(h, w, c) and a maximum distance k,
the patch Pk(i, j) (shown in red) is a
(2k+1, 2k+1, c) tensor collecting all
pixels at distance at most k from the
pixel in position (i, j).
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7.1.2 Local layers

The spatial arrangement of pixels introduces a metric (a distance) between
the pixels. While there are many valid notions of “distance”, we will find it
convenient to work with the following definition, which defines the distance
between pixel (i, j) and (i′, j′) as the maximum distance across the two axes:

d((i, j), (i′, j′)) =max(|i − i′|, | j − j′|) (E.7.3)

How can we exploit this idea in the definition of a layer? Ideally, we can imag-
ine that the influence of a pixel on another one decreases with a factor inversely
proportional to their distance. Pushing this idea to its extreme, we can assume
that the influence is effectively zero for a distance larger than some threshold.
To formalize this insight, we introduce the concept of a patch.

Definition D.7.1 (Image patch) Given an image X , we define the patch
Pk(i, j) as the sub-image centered at (i, j) and containing all pixels at dis-
tance equal or lower than k:

Pk(i, j) = [X ]i−k:i+k, j−k: j+k,:

where distance is defined as in (E.7.3). This is shown visually in Fig. F.7.1.

The definition is only valid for pixels which are at least k steps away from the
borders of the image: we will ignore this point for now and return to it later.
Each patch is of shape (s, s, c), where s = 2k+ 1, since we consider k pixels in
each direction along with the central pixel. For reasons that will be clarified
later on, we call s the filter size or kernel size.
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Consider a generic layer H = f (X ) taking as input a tensor of shape (h, w, c)
and returning a tensor of shape (h, w, c′). If the output for a given pixel only
depends on a patch of predetermined size, we say that the layer is local.

Definition D.7.2 (Local layer) Given an input image X ∼ (h, w, c), a layer
f (X )∼ (h, w, c′) is local if there exists a k such that:

[ f (X )]i j = f (Pk(i, j))

This has to hold for all pixels of the image.

We can transform the layer (E.7.2) into a local layer by setting to 0 all weights
belonging to pixels outside the influence region (receptive field) of each pixel:

Hi j = φ
�

Wi j · vect(Pk(i, j))
�

Flattened patch (of shape s2c′c)

Position-dependent weight matrix

We call this class of layers locally-connected. Note that we have a different
weight matrix Wi j ∼ (c′, ssc) for each output pixel, resulting in hw(s2cc′) pa-
rameters. By comparison, we had (hw)2cc′ parameters in the initial layer, for
a reduction factor of s2

hw in the number of parameters.

Considering our toy example, assuming for example k = 1 (hence s = 3) we
can write the resulting operation as:






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h3

h4






=




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0 0 W41 W42








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x4


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

Our operation is not defined for x1 and x4, in which case we have consid-
ered a “shortened” filter by removing the weights corresponding to undefined
operations. Equivalently, you can think of adding 0 on the border whenever
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necessary:
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This technique is called zero-padding. In an image, for a kernel size 2k+1 we
need exactly k rows and columns of 0 on each side to ensure that the operation
is valid for each pixel. Otherwise, the output cannot be computed close to the
borders, and the output tensor will have shape (h − 2k, w − 2k, c′). Both are
valid options in most frameworks.

On our definition of patches

The definition of convolutions using the idea of patches is a bit unconven-
tional, but I find it to greatly simplify the notation. I provide a more con-
ventional, signal processing oriented definition later on. The two defini-
tions are equivalent and can be used interchangeably. The patch-oriented
definition requires an odd kernel size and does not allow for even kernel
sizes, but these are quite uncommon in practice.

7.1.3 Translational equivariant layers

In the previous layer, two identical patches resulted in different outputs based
on their location: some content on pixel (5, 2), for example, will be processed
differently than the same content on pixel (39,81) because the two matrices
W5,2 and W39,81 are different. For the most part, however, we can assume that
this information is irrelevant: informally, “a horse is a horse”, irrespective of its
positioning on the input image. We can formalize this with a property called
translational equivariance.

Definition D.7.3 (Translational equivariance) We say that a layer H =
f (X ) is translational equivariant if:

112



Chapter 7: Convolutional layers 113

Pk(i, j) = Pk(i
′, j′) implies f (Pk(i, j)) = f (Pk(i

′, j′))

Identical patches Identical outputs

To understand the nomenclature, note that we can interpret the previous def-
inition as follows: whenever an object moves (translates) on the image from
position (i, j) to position (i′, j′), the output f (Pk(i, j)) that we we had in (i, j)
will now be found in f (Pk(i′, j′)). Hence, the activations of the layer are mov-
ing with the same (èqui in Latin) translational movement as the input.

A simple way to achieve translational equivariance is given by weight sharing,
i.e., letting every position share the same set of weights:

Hi j = φ(W · vect(Pk(i, j)))

This is called a convolutional layer, and it is extremely efficient in terms of
parameters: we only have a single weight matrix W of shape (c′, ssc), which
is independent from the resolution of the original image (once again, contrast
this with a layer which is only locally-connected with hw(s2c′c) parameters:
we have reduced them by another factor 1

hw). We can write a variant with
biases by adding c′ additional parameters in the form of a bias vector b∼ (c′).
Because of its importance, we restate the full definition of the layer below.

Definition D.7.4 (Convolutive layer) Given an image X ∼ (h, w, c) and
a kernel size s = 2k + 1, a convolutive layer H = Conv2D(X ) is defined
element-wise by:

Hi j =W · vect(Pk(i, j)) + b (E.7.4)

The trainable parameters are W∼ (c′, ssc) and b∼ (c′). The hyper-parameters
are k, c′, and (eventually) whether to apply zero-padding or not. In the
former case the output has shape (h, w, c′), in the latter case it has shape
(h− 2k, w− 2k, c′).

See Box C.7.1 for a code example. The equivalent object-oriented implemen-
tation can be found in torch.nn.Conv2D. By comparison, our toy example
can be refined as follows:
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x = torch.randn(16, 3, 32, 32)
w = torch.randn(64, 3, 5, 5)
torch.nn.functional.conv2d(x, w, padding='same').shape
# [Out]: torch.Size([16, 64, 32, 32])

Box C.7.1: Convolution in PyTorch. Note that the channel dimension is – by default –
the first one after the batch dimension. The kernel matrix is organized as a (c′, c, k, k)
tensor. Padding can be specified as an integer or a string (‘same’ meaning that the output
must have the same shape as the input, ‘valid’ meaning no padding).
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where we now have only three weights W = [W1, W2, W3]
⊤ (the zero-padded

version is equivalent to before and we omit it for brevity). This weight matrix
has a special structure, where each element across any diagonal is a constant
(e.g., on the main diagonal we only find W2). We call these matrices Toeplitz
matrices,1 and they are fundamental to properly implement this on modern
hardware. In fact, this equation should also clarify that a convolution remains
a linear operation, albeit with a highly restricted weight matrix compared to a
fully-connected one.

Convolutions and terminology

Our terminology comes (mostly) from signal processing. We can understand
this by rewriting the output of the convolutional layer in a more standard form.
To this end, we first rearrange the weight matrix into an equivalent weight
tensor W of shape (s, s, c, c′), similar to the PyTorch implementation in Box
C.7.1. For convenience, we also define an offset that converts an integer i′

from the interval [1, . . . , 2k+ 1] to the interval [i − k, . . . , i + k]:

t = i − k− 1 (E.7.5)

1https://en.wikipedia.org/wiki/Toeplitz_matrix
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We now rewrite the output of the layer with explicit summations across the
axes:

Hi jz =
2k+1
∑

i′=1

2k+1
∑

j′=1

c
∑

d=1

[W ]i′, j′,z,d[X ]i′+t, j′+t,z (E.7.6)

Check carefully the indexing: for a given pixel (i, j) and output channel z (a
free index running from 1 to c′), on the spatial dimensions W must be indexed
along 1,2, . . . , 2k+1, while X must be indexed along i− k, i− k+1, . . . , i+ k−
1, i + k. The index d runs instead over the input channels.

From the point of view of signal processing, this equation corresponds to a
filtering operation on the input signal X through a set of finite impulse re-
sponse (FIR) filters [Unc15], implemented via a discrete convolution (apart
from a sign change). Each filter here corresponds to a slice W:,:,:,i of the weight
matrix. In standard signal processing, these filters can be manually designed
to perform specific operations on the image. As an example, a 3 × 3 filter to
detect ridges can be written as:2

W =





−1 −1 −1
−1 8 −1
−1 −1 −1





In convolutive layers, instead, these filters can be randomly initialized and
trained via gradient descent. We consider the design of convolutional models
built on convolutive layers in the next section. Before continuing, we mention
that an interesting aspect of convolutive layers is that the output maintains a
kind of “spatial consistency” and it can be plotted: we call a slice H:,:,i of the
output an activation map of the layer, representing how much the specific
filter was “activated” on each input region.

7.2 Convolutional models

7.2.1 Designing convolutional “blocks”

With the definition of a convolutional layer in hand, we now turn to the task of
building convolutional models, also called convolutional neural networks

2https://en.wikipedia.org/wiki/Kernel_(image_processing)

115

https://en.wikipedia.org/wiki/Kernel_(image_processing)


116 Convolutional models

(CNNs). We consider the problem of image classification, although a lot of
what we say can be extended to other use cases. To begin with, we formalize
the concept of receptive field.

Definition D.7.5 (Receptive field) Denote by X an image, and by H = g(X )
a generic intermediate output of a convolutional model, e.g., the result of ap-
plying 1 or more convolutive layers. The receptive field R(i, j) of pixel (i, j)
is the subset of X which contributed to its computation:

[g(X )]i j = g(R(i, j)), R(i, j) ⊆ X

For a single convolutional layer, the receptive field of a pixel is equal to a patch:
R(i, j) = Pk(i, j). However, it is easy to prove that for two convolutional layers
in sequence with identical kernel size, the resulting receptive field is R(i, j) =
P2k(i, j), then P3k(i, j) for three layers, and so on. Hence, the receptive field
increases linearly in the number of convolutional layers. This motivates our
notion of locality: even if a single layer is limited in its receptive field by the
kernel size, a sufficiently large stack of them results in a global receptive field.

Next, consider a sequence of two convolutional layers:

H = Conv(Conv(X ))

Because convolution is a linear operation (see previous section), this is equiva-
lent to a single convolution with a larger kernel size (as per the above). We can
avoid this “collapse” in a similar way to fully-connected layers, by interleaving
them with activation functions:

H = (φ ◦Conv ◦ . . . ◦φ ◦Conv)(X )

To continue, we note that in our design, the channel dimension will be modified
by each convolutional layer, while the spatial dimensions will remain of the
same shape (or will be slightly reduced if we avoid zero-padding). However,
it can be advantageous in practice to eventually reduce this dimensionality if
our aim is something like image classification.

Consider again the example of a horse appearing in two different regions across
two different images. The translational equivariance property of convolutional
layers guarantees that every feature found in region 1 in the first image will be
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Figure F.7.2: Visualization of 2x2
max-pooling on a (4,4,1) image. For
multiple channels, the operation is ap-
plied independently on each channel.
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found, correspondingly, in region 2 of the second image. However, if our aim
is “horse classification”, we eventually need one or more neurons activating for
an horse irrespective of where it is found in the image itself: if we only consider
shifts, this property is called translational invariance.

Many operations that reduce over the spatial dimensions are trivially invariant
to translations, for example:

H ′ =
∑

i, j

Hi j or H ′ =max
i, j
(Hi j)

In the context of CNNs, this is called a global pooling. However, this destroys
all spatial information present in the image. We can obtain a slightly more
efficient solution with a partial reduction, called max-pooling.

Definition D.7.6 (Max-pooling layer) Given a tensor X ∼ (h, w, c), a max-
pooling layer, denoted as MaxPool(X)∼ (h

2 , w
2 , c), is defined element-wise as:

[MaxPool(X )]i jc =max
�

[X ]2i−1:2i,2 j−1:2 j,c

�

2× 2 image patch

Hence, we take 2 × 2 windows of the input, and we compute the maximum
value independently for each channel (this can be generalized easily to larger
windows). This effectively halves the spatial resolution while leaving the num-
ber of channels untouched. An example is shown in Figure F.7.2.

We can build a convolutional “block” by stacking several convolutional layers
with a max-pooling operation (see Figure F.7.3):

ConvBlock(X ) = (MaxPool ◦φ ◦Conv ◦ . . . ◦φ ◦Conv)(X )
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Figure F.7.3: Abstracting
away from “layers” to “blocks”
to simplify the design of
differentiable models.
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And a more complex network by stacking together multiple such blocks:

H = (ConvBlock ◦ConvBlock ◦ . . . ◦ConvBlock)(X ) (E.7.7)

This design has a large number of hyper-parameters: the output channels of
each layer, the kernel size of each layer, etc. It is common to drastically reduce
the search space for the design by making some simplifying assumptions. For
example, the VGG design [SLJ+15] popularized the idea of maintaining the
filter size constant in each layer (e.g., k = 3), keeping the number of channels
constant in each block, and doubling them in-between every block.

An alternative way for reducing the dimensionality is to downsample the out-
put of a convolutional layer: this is called the stride of the convolution. For
example, a convolution with stride 1 is a normal convolution, while a convo-
lution with stride 2 will compute only one output pixel every 2, a convolution
with stride 3 will compute one output every 3 pixels, and so on. Large strides
and max-pooling can also be combined together depending on how the entire
model is designed.

Invariance and equivariance

Informally, if T is a transformation on x from some set (e.g., all possi-
ble shifts), we say a function f is equivariant if f (T x) = T f (x), and
invariant if f (T x) = f (x). The space of all transformations form a group
[BBL+17], and the matrix corresponding to a specific transformation is
called a representation for that group. Convolutive layers are equivari-
ant by design, but other strategies can be found for more general forms
of symmetries, such as averaging over the elements of the group (frame
averaging, [PABH+21]). We will see other types of layers’ equivariances
in Chapter 12 and Chapter 10.
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7.2.2 Designing the complete model

We can now complete the design of our model. By stacking together multiple
convolutional blocks as in (E.7.7), the output H will be of shape (h′, w′, c′),
where w′ and h′ depend on the number of max-pooling operations (or on the
stride of the convolutional layers), while c′ will depend only on the hyper-
parameters of the last convolutional layer in the sequence. Note that each
element Hi j will correspond to a “macro-region” in the original image, e.g., if
h′, w′ = 2, H11 will correspond to the “top-left” quadrant in the original image.
We can remove this spatial dependency by performing a final global pooling
operation before classification.

The complete model, then, can be decomposed as three major components: a
series of convolutional blocks, a global average pooling, and a final block for
classification.

H = (ConvBlock ◦ . . . ◦ConvBlock)(X ) (E.7.8)

h=
1

h′w′

∑

i, j

Hi j (E.7.9)

y =MLP(h) (E.7.10)

where MLP(h) is a generic sequence of fully-connected layers (a flattening op-
eration can also be used in place of the global pooling). This is a prototypical
example of a CNN. See Figure F.7.4 for a worked-out example.

This design has a few interesting properties we list here:

1. It can be trained like the models described in Chapter 4 and Chapter
5. For example, for classification, we can wrap the output in a soft-
max and train by minimizing the cross-entropy. The same rules of back-
propagation described in Chapter 6 apply here.

2. Because of the global pooling operation, it does not depend on a specific
input resolution. However, it is customary to fix this during training and
inference to simplify mini-batching (more on variable length inputs in
the next chapter).

3. (E.7.9) can be thought of as a “feature extraction” block, while (E.7.10)
as the “classification block”. This interpretation will be very useful when
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Figure F.7.4: Worked-out design of a very simple CNN for image classification (assum-
ing 10 output classes). We show the output shape for each layer on the bottom. The
global pooling operation can be replaced with a flattening operation. The last (latent)
representation before the classification head is very useful when fine-tuning large-scale
pre-trained networks – it is an embedding of the image in the sense of Section 3.1.1.

we consider transfer learning in the next volume. We call the feature
extraction block the backbone of the model, and the classification block
the head of the model.

Notable types of convolution

We close the chapter by mentioning two instances of convolutional layers that
are common in practice.

First, consider a convolutional layer with k = 0, i.e., a so-called 1×1 convolu-
tion. This corresponds to updating each pixel’s embedding by a weighted sum
of its channels, disregarding all other pixels:

Hi jz =
c
∑

t=1

Wzt X i jz

It is a useful operation for, e.g., modifying the channel dimension (we will see
an example when dealing with residual connections in Chapter 9). In this case,
the parameters can be compactly represented by a matrix W ∼ (c′, c). This is
equivalent to a fully-connected layer applied on each pixel independently.
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Second, consider an “orthogonal” variant to 1× 1 convolutions, in which we
combine pixels in a small neighborhood, but disregarding all channels except
one:

Hi jc =
2k+1
∑

i′=1

2k+1
∑

j′=1

Wi′, j′,cX i′+t, j′+t,c

where t is the offset defined in (E.7.5). In this case we have a rank-3 weight
matrix W of shape (s, s, c), and each output channel H:,:,c is updated by consid-
ering only the corresponding input channel X :,:,c. This is called a depthwise
convolution, and it can be generalized by considering groups of channels, in
which case it is called a groupwise convolution (with the depthwise convo-
lution being the extreme case of a group size equal to 1).

We can also combine the two ideas and have a convolution block made of al-
ternating 1×1 convolutions (to mix the channels) and depthwise convolutions
(to mix the pixels). This is called a depthwise separable convolution and it
is common in CNNs targeted for low-power devices [HZC+17]. Note that in
this case, the number of parameters for a single block (compared to a standard
convolution) is reduced from sscc′ to ssc+ cc′. We will see later how these de-
compositions, where the input is processed alternatively across separate axes,
are fundamental for other types of architectures, such as transformers in Chap-
ter 10.
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8 | Convolutions beyond images

About this chapter

Convolutional models are an extremely powerful baseline model in many
applications, going far beyond image classification. In this chapter we
provide an overview of several such extensions, including the use of con-
volutive layers for 1D and 3D data, text modeling, and autoregressive
generation. Several of the concepts we introduce (e.g., masking, tok-
enization) are fundamental in the rest of the book.

8.1 Convolutions for 1D and 3D signals

8.1.1 Beyond images: time series, audio, video, text

In the previous chapter we focused exclusively on images. However, many
other types of data share similar characteristics, i.e., one or more “ordered” di-
mensions representing time or space, and one dimension representing features
(the channels in the image case). Let us consider some examples:

1. Time series are collections of measurements of one or more processes
(e.g., stocks prices, sensor values, energy flows). We can represent a time
series as a matrix X∼ (t, c), where t is the length of the time series, and
Xi ∼ (c) are the c measurements at time t (e.g., c sensors from an EEG
scan, or c stock prices). Each time instant is equivalent to a pixel, and
each measurement is equivalent to a channel.

2. Audio files (speech, music) can also be described by a matrix X∼ (t, c),
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Figure F.8.1: Audio can be represented as either a 1D sequence (left), or a 2D image in
a time-frequency domain (middle). In the second case, we can apply the same techniques
described in the previous chapter.

where t is now the length of the audio signal, while c are the channels
of the recording (1 for a mono audio, 2 for a stereo signal, etc.).

Frequency-analysis

Audios can also be converted to an image-like format via frequency
analysis (e.g., extracting the MFCC coefficients over small win-
dows), in which case the resulting time-frequency images represent
the evolution of the frequency content over the signal - see Figure
F.8.1 for an example. With this preprocessing we can use standard
convolutive models to process them.

3. Videos can be described by a rank-4 tensor X ∼ (t, h, w, c), where t is
the number of frames of the video, and each frame is an image of shape
(h, w, c). Another example is a volumetric scan in medicine, in which
case t is the volume depth.

Time series, audio signals, and videos can be described by their sampling rate,
which denotes how many samples are acquired per unit of time, sometimes
expressed in samples per second, or hertz (Hz). For example, classical EEG
units acquire signals at 240 Hz, meaning 240 samples each second. A stock
can be checked every minute, corresponding to 1/60 Hz. By contrast, audio is
acquired with very high frequency to ensure fidelity: for example, music can
be acquired at 44.1e3 Hz (or 44.1 kHz). Typical acquisition frame rates for

124



Chapter 8: Convolutions beyond images 125

video are instead around 24 frames per second (fps) to ensure smoothness to
the human eye.

Image resolution, audio sampling rate, and video frame rates all play simi-
lar roles in determining the precision with which a signal is acquired. For an
image, we can assume a fixed resolution a priori (e.g., 1024 × 1024 pixels).
This is reasonable, since images can always be reshaped to a given resolution
while maintaining enough consistency, except for very small resolutions. By
contrast, audio and video durations can vary from input to input (e.g., a song
of 30 seconds vs. a song of 5 minutes), and they cannot be reshaped to a
common dimension, meaning that our datasets will be composed of variable-
length data. In addition, audio resolution can easily grow very large: with a
44.1 kHz sampling rate, a 3-minute audio will have ≈ 8M samples.

We also note that the dimensions in these examples can be roughly categorized
as either “spatial dimensions” (e.g., images) or “temporal dimensions” (e.g.,
audio resolution). While images can be considered symmetric along their spa-
tial axes (in many cases, an image flipped along the width is another valid
image), time is asymmetric: an audio sample inverted on its temporal axis is in
general invalid, and an inverted time series represents a series evolving from
the future towards its past. Apart from exploiting this aspect in the design of
our models (causality), we can also be interested in predicting future values
of the signal: this is called forecasting.

Finally, consider a text sentence, such as “the cat is on the table”. There are
many ways to split this sentence into pieces. For example, we can consider
its individual syllables: [”the”, “cat”, “i”, “s”, “on”, “the”, “ta”, ble”]. This is
another example of a sequence, except that each element of the sequence is
now a categorical value (the syllable) instead of a numerical encoding. Hence,
we need some way of encoding these values into features that can be processed
by the model: splitting a text sequence into components is called tokenization,
while turning each token into a vector is called embedding the tokens.

In the next sections we consider all these aspects (variable-length inputs, causal-
ity, forecasting, tokenization, and embedding) in turn, to see how we can build
convolutional models to address them. Some of the techniques we introduce,
such as masking, are very general and are useful also for other types of mod-
els, such as transformers. Other techniques, such as dilated convolutions, are
instead specific to convolutional models.
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126 Convolutions for 1D and 3D signals

8.1.2 1D and 3D convolutional layers

Let us consider how to define convolutions for 1D signals (e.g., time series,
audio) and their extension to 3D signals (e.g., videos). Note that the dimen-
sionality refers only to the number of dimensions along which we convolve
(spatial or time), and does not include the channel dimension. Recall that, in
the 1D case, we can represent the input as a single matrix:

X∼ ( t , c )

Length of the sequence Features

We now replicate the derivation from Chapter 7. Given a patch size s = 2k +
1, we define Pk(i) ∼ (s, c) as the subset of rows in X at distance at most k
from i (ignoring border elements for which zero-padding can be used). A 1D
convolutional layer H = Conv1D(X) outputs a matrix H ∼ (t, c′), with c′ an
hyper-parameter that defines the output dimensionality, defined row-wise as:

[Conv1D(X )]i = φ(W · vect(Pk(i)) + b) (E.8.1)

with trainable parameters W ∼ (c′, sc) and b ∼ (c′). Like in the 2D case, this
layer is local (for a properly modified definition of locality) and equivariant to
translations of the sequence.

In the 2D case, we also discussed an alternative notation with all indices ex-
plicitly summed over:

Hi jz =
2k+1
∑

i′=1

2k+1
∑

j′=1

c
∑

d=1

[W ]i′, j′,z,d[X ]i′+t, j′+t,d (E.8.2)

where t = i + k − 1 as in (E.7.5). Recall that we use t to index i′ and j′

differently for the two tensors: from 1 to 2k+ 1 for W , and from i − k to i + k
for X . The equivalent variant for (E.8.1) is obtained trivially by removing one
summation index:

Hiz =
2k+1
∑

i′=1

c
∑

d=1

[W ]i′,z,d[X ]i′+t,d (E.8.3)
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where the parameters W ∼ (s, c′, c) are now organized in a rank-3 tensor. By
contrast, the 3D variant is obtained by adding a new summation over the third
dimension with index p:

Hpi jz =
2k+1
∑

p′=1

2k+1
∑

i′=1

2k+1
∑

j′=1

,
c
∑

d=1

[W ]p′,i′, j′,z,d[X ]p′+t,i′+t, j′+t,d

We assume that the kernel size is identical across all dimensions for simplicity.
With similar reasonings we can derive a vectorized 3D variant of convolution,
and also 1D and 3D variants of max pooling.

8.2 Convolutional models for 1D and 3D data

We now consider the design of convolutional models in the 1D case, with a
focus on how to handle variable-length inputs and how to deal with text se-
quences. Several of the ideas we introduce are fairly generic for all neural
network models.

8.2.1 Dealing with variable-length inputs

Consider two audio files (or two time series, or two texts), described by their
corresponding input matrices X1 ∼ (t1, c) and X2 ∼ (t2, c). The two inputs
share the same number of channels c (e.g., the number of sensors), but they
have different lengths, t1 and t2. Remember from our discussion in Section
7.1 that convolutions can handle (in principle) such variable-length inputs. In
fact, denote by g a generic composition of 1D convolutions and max-pooling
operations, corresponding to the feature extraction part of the model. The
output of the block are two matrices:

H1 = g(X1) , H2 = g(X2)

having the same number of columns but a different number of rows (depend-
ing on how many max-pooling operations or strided convolutions are applied
on the inputs). After global average pooling, the dependence on the length
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128 Convolutional models for 1D and 3D data

# Sequences with variable length (3, 5, 2, respectively)
X1, X2, X3 = torch.randn(3, 8),

torch.randn(5, 8),
torch.randn(2, 8)

# Pad into a single mini-batch
X = torch.nn.utils.rnn.pad_sequence([X1, X2, X3],

batch_first=True)
print(X.shape) # [Out]: torch.Size([3, 5, 8])

Box C.8.1: A padded mini-batch from three sequences of variable length (with c =
8). When using a DataLoader, padding can be achieved by over-writing the default
collate_fn, which describes how the loader concatenates the individual samples.

disappears:
h1 =

∑

i

H1i , h2 =
∑

i

H2i

and we can proceed with a final classification on the vectors h1 and h2. How-
ever, while this is not a problem at the level of the model, it is a problem in
practice, since mini-batches cannot be built from matrices of different dimen-
sions, and thus operations cannot be easily vectorized. This can be handled by
zero-padding the resulting mini-batch to the maximum dimension across the
sequence length. Assuming for example, without lack of generality, t1 > t2,
we can build a “padded” mini-batch as:

X = stack
�

X1,
�

X2

0

��

where stack operates on a new leading dimension, and the resulting tensor X
has shape (2, t1, c). We can generalize this to any mini-batch by considering the
largest length with respect to all elements of the mini-batch. For a convolution,
this is not very different from zero-padding, and operating on the padded input
will not influence significantly the operation (e.g., in audio, zero-padding is
equivalent to adding silence at the end). See Box C.8.1 for an example of
building a padded mini-batch.

Alternatively, we can build a masking matrix describing valid and invalid in-
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Figure F.8.2: Starting
from a text, multiple
types of tokenizers are
possible. In all cases,
symbols are then embed-
ded as vectors and pro-
cessed by a generic 1D
model.

Classify this text!

Character
tokenizer

['c', 'l', 'a', ..., 't', '!']

Sub-word
tokenizer

['clas', 'si', ..., 'text']

Word
tokenizer

['classify', 'this', 'text']

Embedding

Neural network

dexes in the mini-batched tensor:

M=
�

1t1

1t2
0t1−t2

�

where the index denotes the size of the vectors. These masking matrices can
be helpful to avoid invalid operations on the input tensor.

8.2.2 CNNs for text data

Let us consider now the problem of dealing with text data. As we mentioned
previously, the first step in dealing with text is tokenization, in which we divide
the text (a string) into a sequence of known symbols (also called tokens in this
context). There are multiple types of tokenizers:

1. Character tokenizer: each character becomes a symbol.

2. Word tokenizer: each (allowed) word becomes a symbol.

3. Subword tokenizer: intermediate between a character tokenizer and a
word tokenizer, each symbol is possibly larger than a character but also
smaller than a word.

This is shown schematically in Figure F.8.2. In all three cases, the user has to
define a dictionary (vocabulary) of allowed tokens, such as all ASCII char-
acters for a character tokenizer. In practice, one can select a desired size of
the dictionary, and then look at the most frequent tokens in the text to fill it
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130 Convolutional models for 1D and 3D data

Figure F.8.3: Example of ap-
plying the tiktoken tokenizer to a
sentence.

up, with every other symbol going into a special “out-of-vocabulary” (OOV)
token. Subword tokenizers have many specialized algorithms to this end, such
as byte-pair encoding (BPE) [SKF+99].1

Because large collections of text can have a wide variability, pre-trained sub-
word tokenizers are a standard choice nowadays. As a concrete example,
OpenAI has released an open-source version of its own tokenizer,2 which is
a subword model consisting of approximately 100k subwords (at the time of
writing). Consider for example the encoding of “This is perplexing!” with this
tokenizer, shown in Figure F.8.3. Some tokens correspond to entire words (e.g.,
“This”), some to pieces of a word (e.g, “perplex”), while others to punctuation
marks. The sequence can be equivalently represented by a sequence of inte-
gers:

[2028,374, 74252,287, 0]

Each integer spans between 0 and the size of the vocabulary (in this case,
roughly 100k), and it uniquely identifies the token with respect to that vo-
cabulary. In practice, nothing prevents us from adding “special” tokens to the
sequence, such as tokens representing the beginning of the sentence (some-
times denoted as [BOS]), OOV tokens, or anything else. The [BOS] token will
be of special significance in the next section.

Subword tokenization with very large dictionaries can be counter-intuitive at
times: for example, common digits such as 52 have their unique token, while
digits like 2512 can be split into a “251” token and a “2” token. For applications
where processing numbers is important, specialized numerical tokenizers can
be applied [GPE+23]. In general, visualizing the tokenization process is always
important to debug the models’ behaviour.

1This is a short exposition focused on neural networks, and we are ignoring many pre-
processing operations that can be applied to text, such as removing stop words, punctuation,
“stemming”, and so on. As the size of the models has grown, these operations have become
less common.

2https://github.com/openai/tiktoken
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Figure F.8.4: A lookup table
to convert a sequence of tokens’
IDs to their curresponding em-
beddings: the input is a list, the
output is a matrix. The embed-
dings (shown inside the box)
can be trained together with all
the other parameters via gradi-
ent descent. We assume the size
of the vocabulary is n= 16.

Check
Out

This

...

Bowling

Check this out

Tokenizer

[2, 16, 3]

1D CNN

After the tokenization step, the tokens must be embedded into vectors to be
used as inputs for a CNN. A simple one-hot encoding strategy here works
poorly, since vocabularies are large and the resulting vectors would be sig-
nificantly sparse. Instead, we have two alternative strategies: the first is to use
pretrained networks that perform the embedding for us; we will consider this
option later on, when we introduce transformers. In order to build some intu-
ition for it, we consider here the second alternative, training the embeddings
together with the rest of the network.

Suppose we fix an embedding dimension e as a hyper-parameter. Since the
size n of the dictionary is also fixed, we can initialize a matrix of embeddings
E ∼ (n, e). We now define a look-up operation that replaces each integer with
the corresponding row in E. Denoting by x the sequence of IDs we have:

LookUp(x) = X=











Ex1

Ex2
...

Exm











Row x1 in the embedding matrix

The resulting input matrix X will have shape (m, e), where m is the length of
the sequence. We can now apply a generic 1D convolutional model for, e.g.,
classifying the text sequence:

ŷ = CNN(X)
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class TextCNN(nn.Module):
def __init__(self, n, e):

super().__init__()
self.emb = nn.Embedding(n, e)
self.conv1 = nn.Conv1d(e, 32, 5, padding='same')
self.conv2 = nn.Conv1d(32, 64, 5, padding='same')
self.head = nn.Linear(64, 10)

def forward(self, x): # (*, m)
x = self.emb(x) # (*, m, e)
x = x.transpose(1, 2) # (*, e, m)
x = relu(self.conv1(x)) # (*, 32, m)
x = max_pool1d(x, 2) # (*, 32, m/2)
x = relu(self.conv2(x)) # (*, 64, m/2)
x = x.mean(2) # (*, 64)
return self.head(x) # (*, 10)

Box C.8.2: A 1D CNN with trainable embeddings. n is the size of the dictionary, e is the
size of each embedding. We use two convolutive layers with 32 and 64 output channels.
The shape of the output for each operation in the forward pass is shown as a comment.

This model can be trained in a standard way depending on the task, except
that gradient descent will be performed jointly on the parameters of the model
and the embedding matrix E. This is shown visually in Figure F.8.4, and an
example of model’s definition is given in Box C.8.2.

This idea is extremely powerful, especially because in many cases we find that
the resulting embeddings can be manipulated algebraically as vectors, e.g., by
looking at the closest embeddings in an Euclidean sense to find “semantically
similar” words or sentences. This idea is at the core of the use of differentiable
models in many sectors that necessitate retrieval or search of documents.

Differentiable models and embeddings

Once again, the idea of embedding is very general: any procedure that
converts an object into a vector with these characteristics is an embed-
ding. For example, the output of the backbone after global pooling of a
trained CNN can be understood as a high-level embedding of the input
image, and it can be used to retrieve “similar” images by comparing it to
all other embeddings.
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Figure F.8.5: Convolutive layers
with increasing dilation rates. El-
ements selected for the convolution
are in red, the others are greyed out.
We show the receptive field for a sin-
gle output element.

8.2.3 Dealing with long sequences

Many of the sequences described before can be very long. In this case, the
locality of convolutive layers can be a drawback, because we need a linearly
increasing number of layers to process larger and larger receptive fields. We
will see in the next chapters that other classes of models (e.g., transformers)
can be designed to solve this problem. For now we remain in the realm of
convolutions and we show one interesting solution, called dilated (or atrous,
from the French à trous) convolutions, popularized in the WaveNet model for
speech generation [ODZ+16].

We introduce an additional hyper-parameter called the dilation rate. A con-
volution with dilation rate of 1 is a standard convolution. For a dilation rate
of 2, we modify the convolution operation to select elements for our patch by
skipping one out of two elements in the sequence. Similarly, for a dilation rate
of 4, we skip three elements over four, etc. We stack convolutive layers with
exponentially increasing dilation rates, as shown in Figure F.8.5.

The number of parameters does not change, since the number of neighbors
remain constant irrespective of the dilation rate. However, it is easy to show
that the resulting receptive field in this case grows exponentially fast in the
number of layers.

8.3 Forecasting and causal models

8.3.1 Forecasting sequences

One important aspect of working with sequences is that we can build a model
to predict future elements, e.g., energy prices, turbulence flows, call center
occupations, etc. Predicting tokens is also the fundamental building block for
large language models and many other recent breakthroughs in neural net-
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works. In a very broad sense, much of the current excitement around neural
networks revolves around the question of how much a model can be expected
to infer from next-token prediction on large corpora of text, and how much this
setup can be replicated across different modalities (e.g., videos) and dynam-
ics [WFD+23]. Formally, predicting the next element of a sequence is called
forecasting in statistics and time series analysis. From now on, to be consis-
tent with modern literature, we will use the generic term token to refer to
each element of the sequence, irrespective of whether we are dealing with an
embedded text token or a generic vector-valued input.

Just like text processing, forecasting real-world time series has a number
of associated problems (e.g., the possible non-stationarity of the time se-
ries, trends and seasonalities) that we do not consider here. In practice,
audio, text, and many other sequences of interest can be considered sta-
tionary and do not need special preprocessing. Like for text, for very
large forecasting datasets and correspondingly large models, the impact
of preprocessing tend to diminish [AST+24].

The reason forecasting is an important problem is that we can train a fore-
casting model by just having access to a set of sequences, with no need for
additional target labels: in modern terms, this is also called a self-supervised
learning task, since the targets can be automatically extracted from the inputs.

To this end, suppose we fix a user-defined length t, and we extract all possible
subsequences of length t from the dataset (e.g., with t = 12, all consecutive
windows of 12 elements, or all sentences composed of 12 tokens, etc.). In the
context of LLMs, the size of the input sequence is called the context of the
model. We associate to each subsequence a target value which is the next ele-
ment in the sequence itself. Thus, we build a set of pairs (X,y),X∼ (t, c) , y ∼
(c) and our forecasting model is:

f (X)≈ y

Note that a standard 1D convolutional model can be used as forecasting model,
trained with either mean-squared error (for continuous time series) or cross-
entropy (for categorical sequences, such as text). While the model is trained to
predict a single step-ahead, we can easily use it to generate as many steps as we
want by what is called an autoregressive approach, meaning that the model
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is predicting (regressing) on its own outputs. Suppose we predict a single step,
by = f (X), and we create a “shifted” input by adding our predicted value to the
input (removing the first element to avoid exceeding t elements):

X′ =

�

X2:t

by

�

(E.8.4)

Predicted value at time t + 1

Forecasting discrete sequences

For a continuous time series this is trivial. For a time series with discrete
values, f will return a probability vector over the possible values (i.e.,
possible tokens), and we can obtain by by taking its argmax.

We can now run f (X′) to generate the next input value in the sequence, and
so on iteratively, by always updating our buffered input in a FIFO fashion.
This approach is extremely powerful, but it requires us to fix a priori the input
sequence length, which limits its applicability. To overcome this limitation, we
need only a minor modification to our models.

8.3.2 Causal models

Suppose we only have available a short sequence of 4 elements collected into a
matrix X∼ (4, c), but we have trained a forecasting model on longer sequences
with t = 6. In order to run the model on the shorter sequence, we can zero-
pad the sequence with two zero vectors 0 at the beginning, but these will be
interpreted by the model as actual values of the time series unless we mask its
operations. Luckily, there is a simpler and more elegant approach in the form
of causal models.

Definition D.8.1 (Causal layer) A layer H= f (X) is causal if Hi = f (X:i),
i.e., the value corresponding to the i-th element of the sequence depends only
on elements “from its past”.

A model composed only of causal layers will, of course, be causal itself. For
example, a convolutive layer with kernel size 1 is causal, since each element
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Figure F.8.6: Overview of a 1D causal
convolutive layer with (original) kernel
size of 3 and exponentially increasing di-
lation rates. Zeroed out connections are
removed, and we show the receptive field
for a single output element.

Time dimension

is processed considering only itself. However, a convolutive layer with kernel
size 3 is not causal, since it is processed considering in addition one element
to the left and one element to the right. We can convert any convolution into
a causal variant by partially zero masking the weights corresponding to non-
causal connections:

hi = φ
��

W⊙M
�

vect(Pk(i)) + b
�

Masked weight matrix

where Mi j = 0 if the weight corresponds to an element in the input such that
j > i, 1 otherwise. Causal 1D convolutions can be combined with dilated ker-
nels to obtain autoregressive models for audio, such as in the WaveNet model
[ODZ+16] - see Figure F.8.6 for an example.

Masking is easier to understand in the case of a single channel, in which case M
is simply a lower-triangular binary matrix. The masking operation effectively
reduces the number of parameters from (2k+ 1)cc′ to (k+ 1)cc′.

By stacking several causal convolutive layers, we can obtain a causal 1D model
variant. Suppose we apply it on our input sequence, with a model that has no
max-pooling operations. In this case, the output sequence has the same length
as the input sequence:

bY= fcausal(X)

In addition, any element in the output only depends on input elements in the
same position or preceding it. Hence, we can define a more sophisticated fore-
casting model by predicting a value for each element of the input sequence. Prac-
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Convolutional model

Global Average Pooling

MSE

(a) Non-causal model

Causal convolutional model

MSE

(b) Causal model

Figure F.8.7: Comparison between (a) a non-causal model for forecasting (predicting
only a single element for the entire input sequence) and (b) a causal model trained to
predict one output element for each input element in the sequence.

tically, consider now a matrix output defined as:

Y=
�

X2:t

y

�

This is similar to the shifted input from (E.8.4), except that we are adding
the true value as last element of the sequence. We can train this model by
minimizing a loss on all elements, e.g., a mean-squared error:

l(bY,Y) = ∥bY− Y∥2 =
t
∑

i=1

∥bYi − Yi∥2 (E.8.5)

Loss when predicting Xi+1

We simultaneously predict the second element based on the first one, the third
one based on the first two, etc. For a single input window, we have t separate
loss terms, greatly enhancing the gradient propagation. A comparison between
the two approaches is shown in Figure F.8.7: in Figure F.8.7a we show a non-
causal convolutive model trained to predict the next element in the sequence,
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Causal model Causal model Causal model

Figure F.8.8: Inference with a causal CNN, generating a sequence step-by-step in an
autoregressive way. Unused input tokens are greyed out. Generated tokens are colored
with different colors to distinguish them.

while in Figure F.8.7b we show a causal model trained according to (E.8.5).

More importantly, we can now use the model in an autoregressive way with
any sequence length up to the maximum length of t. This can be seen easily
with an example. Suppose we have t = 4, and we have observed two values x1

and x2. We call the model a first time by zero-padding the sequence to generate
the third token:







−
bx3

−
−






= f













x1

x2

0
0













We are ignoring all output values except the second one (in fact, the third
and fourth outputs are invalid due to the zero-padding). We add bx3 to the
sequence and continue calling the model autoregressively (we show in color
the predicted values):







−
−
bx4

−






= f













x1

x2

bx3

0












,







−
−
−
bx5






= f













x1

x2

bx3

bx4












,







bx6

−
−
−






= f













x2

bx3

bx4

bx5












. . .

In the last step we removed one of the original inputs to keep the constraint
on the size of the input. This is also shown in Figure F.8.8. Note that the
model is trained only on real values, not on its own predictions: this is called
teacher forcing. A variant of teacher forcing is to progressively replace some of
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the values in the mini-batches with values predicted by the model, as training
proceeds and the model becomes more accurate.

Causal autoregressive models are especially interesting in the case of text se-
quences (where we only have a single channel, the index of the tokens), since
we can start from a single [BOS] token representing the beginning of the se-
quence and generate text sentences from scratch, or condition the generation
on a specific prompt by the user which is appended to the [BOS] token. A
similar reasoning can be applied to audio models to generate speech or music.

8.4 Autoregressive and generative models

8.4.1 A probabilistic formulation of generative models

An autoregressive model is a simple example of a generative model. We will
talk at length about other types of generative models in the next volume. For
now, we provide some simple insights specific to this class of algorithms. We
consider time series with a single channel and discrete values, such as text,
which are the foundation of LLMs.

Generative models are more naturally framed in the context of probabilities, so
we begin by reframing our previous discussion with a probabilistic formalism.
Denote byX the space of all possible sequences (e.g., all possible combinations
of text tokens). In general, many of these sequences will be invalid, such as the
sequence [“tt”, “tt”] in English. However, even very uncommon sequences may
appear at least once or twice in very long corpora of text (imagine a character
yelling “Scotttt!”).

We can generalize this by considering a probability distribution p(x) over all
possible sequences x ∈ X . In the context of text, this is also called a language
model. Generative modeling is the task of learning to sample efficiently from
this distribution:3

x ∼ p(x)

To see how this connects to our previous discussion, note that by the product

3In this section ∼ is used to denote sampling from a probability distribution instead of the
shape of a tensor.
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rule of probability we can always rewrite p(x) as:

p(x) =
∏

i

p(x i | x:i) (E.8.6)

where we condition each value x i to all preceding values. If we assume that our
model input length is large enough to accommodate all possible sequences, we
can use a causal forecasting model to parameterize the probability distribution
in (E.8.6):

p(x i | x:i) = Categorical(x i | f (x:i))

where we use a single, shared model for all time-steps.

8.4.2 Sampling in an autoregressive model

In order to sample from the probability distribution p(x), we can sample in
turn the elements of its product decomposition, i.e.:

1. Sample x1 ∼ p(x1) (remember that, in practice, we always condition
initially on a [BOS] token).

2. Sample x2 ∼ p(x2 | x1).

3. Sample x3 ∼ p(x3 | x1, x2).

4. . . .

We did this implicitly before by always sampling the element of highest prob-
ability:

x i = argmax
i

f (x:i)

However, we can also generalize this by sampling a value according to the
probabilities predicted by f . Remember (Sec. 4.2.1) that the softmax can be
generalized by considering an additional temperature parameter. By varying
this parameter during inference, we can vary smoothly between always taking
the argmax value (very low temperature) to having an almost uniform distri-
bution over tokens (very high temperature).

In the context of probabilistic modelling, sampling in this way from this class
of models is called ancestral sampling, while in the context of language mod-
elling we sometimes use the term greedy decoding. The use of the term
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“greedy” and this brief discussion is enough to highlight one potential draw-
back of these models: while the product decomposition of p(x) is exact, greedy
decoding is not guaranteed to provide a sample corresponding to high values
of p(x).

To see this, note that f provides an estimate of the probability for a single
token, but the probability of a sequence is given by a product of many such
terms. Hence, sampling a token with high (local) probability at the beginning
of a sequence may not correspond to a sequence having large (global) proba-
bility as a sentence. This is easy to visualize if you imagine the choice of the
first token letting the decoding stage being “stuck” in a low-probability path.

A common mitigation to this problem is beam search (or beam decoding).
In beam search, in the first step we sample k different elements (called the
beams, with k being a user-defined parameter). In the second step, for each
of our k beams we sample k possible continuations. Out of these k2 pairs, we
keep only the top-k values in terms of their product probability p(x1)p(x2 | x1)
(or, equivalently, their log probability). We continue iteratively in this way
until the end of the sequence.

Viewed under this lens, sampling the most probable sequence from our au-
toregressive model is, in fact, a combinatorial search problem (think of a tree,
where for each token we expand across all possible next tokens, and so on).
From the point of view of computer programming, beam search is then an
example of breadth-first search over this tree.

8.4.3 Conditional modelling

As we mentioned earlier, in general we may not be interested so much in gen-
erating sequences from scratch, but in generating continuations of known se-
quences, such as a user’s question or interaction. This can be formalized by
considering conditional probability distributions in the form p(x | c), where c
is the conditioning argument, such as a user’s prompt. Our previous discus-
sion extends almost straightforwardly to this case. For example, the product
decomposition is now written as:

p(x | c) =
∏

i

p(x i | x:i, c)
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where we condition on the previous inputs and the user’s context. Sampling,
decoding, etc., are extended in a similar way.

To perform conditional generation we parameterize
∏

i p(x i | x:i, c) with a
neural network f (x , c) such that:

∏

i

p(x i | x:i, c)≈ Categorical(x i | f (x:i, c))

Hence, the major difference with the unconditional case is that we need a
function f (x , c) having two input arguments and which satisfies causality in
the first argument. When working with autoregressive models, if both x and
c are texts we can do this easily be considering c as part of the input sequence
and working with a single concatenated input x ′ = [c∥x]. For example, with
the user’s prompt “The capital of France”, taking for simplicity a word tokenizer
we might have:4

fcausal([The, capital, of, France]) = is

fcausal([The, capital, of, France, is]) = Paris

Hence, we can handle unconditional and conditional modelling simultaneously
with a single model.5 In the next volume we will see other examples of condi-
tional generative models in which more sophisticated strategies are needed.

4We ignore the presence of an end-of-sequence token (EOS) to stop the autoregressive
generation.

5We will see in Chapter 11 that almost any type of data can be converted into a sequence
of tokens. Suppose we are generating a text sequence conditioned on an image prompt (e.g.,
image captioning). If both text and images are converted to tokens having the same embed-
ding size, we can apply an autoregressive model by concatenating the tokens from the two
input types (also called modalities in this context).
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About this chapter

We now turn to the task of designing differentiable models having dozens
(or hundreds) of layers. As we saw, the receptive field of convolutional
models grows linearly with the number of layers, motivating architectures
with such depth. This can be done by properly stabilizing training using
a plethora of methods, ranging from data augmentation to normalization
of the hidden states.

9.1 Introduction

Let us consider again the task of image classification, which holds a strong in-
terest for neural networks, both practically and historically. In fact, interest in
neural networks in the period 2012-2018 can be associated in large part to the
so-called ImageNet Large Scale Visual Recognition Challenge1 (later Ima-
geNet for simplicity). ImageNet was a yearly challenge that run from 2010 to
2017 to evaluate state-of-the-art models for image classification. The challenge
was run on a subset of the entire ImageNet dataset, consisting of approximately
1M images tagged across 1k classes.

It is instructive to take a look at the early editions of the challenges. In 20102

and in 2011,3 the winners were linear kernels methods built with a combina-
tion of specialized image descriptors and kernels, with a top-5% error of 28%

1https://image-net.org/challenges/LSVRC/
2https://image-net.org/challenges/LSVRC/2010/
3https://image-net.org/challenges/LSVRC/2011/
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Figure F.9.1: Top-1 accuracy on
the ImageNet dataset. Reproduced
from Papers With Code.a

ahttps://paperswithcode.

com/

(2010) and 26% (2011). Despite a number of promising results,4 convolu-
tional models trained by gradient descent remained a niche topic in computer
vision. Then, In 2012 the winner model (AlexNet, [KSH12]) achieved a top-5%
error of 15.3%, 10% lower than all (non-neural) competitors.

This was followed by a veritable “Copernican revolution” (apologies to Coper-
nicus) in the field, since in a matter of a few years almost all submissions
turned to convolutional models, and the overall accuracy grew at an unprece-
dented speed, upward of 95% (leading to the end of the challenge in 2017), as
shown in Figure F.9.1. In a span of 5 years, neural network became the leading
paradigm in computer vision, including other subfields we are not mentioning
here, from object detection to semantic segmentation and depth estimation.

AlexNet was a relatively simple model consisting of 5 convolutive layers and
3 fully-connected layers, totaling approximately 60M parameters, while the
top-performing models in Figure F.9.1 require up to hundreds of layers. This
is basic example of a scaling law (Chapter 1): adding layers and compute
power for training is proportionally linked to the accuracy of the model up
to a saturation point given by the dataset. However, scaling up convolutional
models beyond a few layers is non-trivial, as it runs into a number of problems
ranging from slow optimization to gradient issues and numerical instabilities.
As a consequence, a large array of techniques were developed in 2012-2017 to
stabilize training of very large models.

In this chapter we provide an overview of some of these techniques. We fo-
cus on ideas and methods that are still fundamental nowadays, even for other

4https://people.idsia.ch/~juergen/computer-vision-contests-won-by-gpu-

cnns.html
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architectures (e.g., transformers). We begin by three techniques to improve
training that are not specific to neural network: weight regularization, data
augmentation, and early stopping. Then, we describe three of the most influ-
ential techniques popularized in 2012-2017: dropout, batch normalization,
and residual connections, more or less in chronological order of introduction.
For each method we describe the basic algorithm along with some variants that
work well in practice (e.g., layer normalization).

9.2 Data and training strategies

9.2.1 Weight regularization

One possible way to improve training is to penalize solutions that may seem
unplausible, such as having one or two extremely large weights. Denote by w
the vector of all parameters of our model, and by L(w,Sn) the loss function on
our dataset (e.g., average cross-entropy). We can formalize the previous idea
by defining a so-called regularization term R(w) that scores solutions based
on our preference, and penalize the loss by adding the regularization term to
the original loss function:

Lreg = L(w,Sn) +λR(w)

where we assume that a higher value of R(w) corresponds to a worse solution,
and λ ≥ 0 is a scalar that weights the two terms. For λ = 0 the regularization
term has no effect, while for λ→∞ we simply select the best function based
on our a priori knowledge.

This can also be justified as performing maximum a-priori (instead of maxi-
mum likelihood) inference based on the combination of a prior distribution on
the weights p(w) and a standard likelihood function on our data (Section 3.3):

w∗ = argmax
w

{log p(Sn |w) + log p(w)} (E.9.1)

where having a regularization term corresponds to a non-uniform prior distri-
bution p(w). We have already seen one example of regularization in Section
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4.1.6, i.e., the ℓ2 norm of the weights:

R(w) = ∥w∥2 =
∑

i

w2
i

For the same unregularized loss, penalizing the ℓ2 norm will favor solutions
with a lower weight magnitude, corresponding to “less abrupt” changes in the
output for a small deviation in the input.5 Consider now the effect of the reg-
ularization term on the gradient term:

∇Lreg =∇L(w,Sn) + 2λw

Written in this form, this is sometimes called weight decay, because absent
the first term, its net effect is to decay the weights by a small proportional
factor λ (sending them to 0 exponentially fast in the number of iterations
if ∇L(w,Sn) = 0). For (S)GD, ℓ2 regularization and weight decay coincide.
However, for other types of optimization algorithms (e.g., momentum-based
SGD, Adam), a post-processing is generally applied on the gradients. Denoting
by g(∇L(w,Sn)) the post-processed gradients of the (unregularized) loss, we
can write a generalized weight decay formulation (ignoring the constant term
2) as:

wt =wt−1 − g(∇L(wt−1,Sn)) −λw

Unregularized gradient

Weight decay term

This is different from pure ℓ2 regularization, in which case the gradients of
the regularization term would be inside g(·). This is especially important for
algorithms like Adam, for which the weight decay formulation can work better
[LH17].

We can also consider other types of regularization terms. For example, the ℓ1

norm:
R(w) = ∥w∥1 =

∑

i

|x i|

can favor sparse solutions having a high percentage of zero values (and it cor-
responds to placing a Laplace prior on the weights). This can also be gener-

5With respect to (E.9.1), ℓ2 regularization is equivalent to choosing a Gaussian prior on the
weights with diagonal σ2I covariance.
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alized to group sparse variants to enforce structured sparsity on the neurons
[SCHU17] (see [BJM+12] for a review on sparse penalties in the context of
convex models). Sparse ℓ1 penalization is less common than for other machine
learning models because it does not interact well with the strong non-convexity
of the optimization problem and the use of gradient descent [ZW23]. However,
it is possible to re-parameterize the optimization problem to mitigate this issue
at the cost of a larger memory footprint. In particular, [ZW23] showed that we
can replace w with two equivalently shaped vectors a and b, and:

w= a⊙ b , ∥w∥1 ≈ ∥a∥2 + ∥b∥2 (E.9.2)

where ≈ means that the two problems can be shown to be almost equivalent
under very general conditions [ZW23].

We can gain some geometric insights as to why (and how) regularization works
by considering a convex loss function L(·, ·) (e.g., least-squares), in which case
the regularized problem can be rewritten in an explicitly constrained form as:

argmin L(w,Sn)
subject to R(w)≤ µ (E.9.3)

where µ depends proportionally on λ, with the unconstrained formulation aris-
ing by rewriting (E.9.3) with a Lagrange multiplier. In this case, ℓ2 regulariza-
tion corresponds to constraining the solution to lie inside a circle centered in
the origin, while ℓ1 regularization corresponds to having a solution inside (or
on the vertices) of a regular polyhedron centered in the origin, with the sparse
solutions lying at the vertices intersecting the axes.

9.2.2 Early stopping

From the point of view of optimization, minimizing a function L(w) is the task
of finding a stationary point as quickly as possible, i.e., a point wt such that
∇L(wt)≈ 0:

∥L(wt)− L(wt−1)∥2 ≤ ϵ

for some tolerance ϵ > 0. However, this does not necessarily correspond to
what we want when optimizing a model. In particular, in a low-data regime
training for too long can incur in overfitting and, in general, anything which
improves generalization is good irrespective of its net effect on the value on
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L(·) or the descent direction (e.g., weight decay).

Early stopping is a simple example of the difference between pure optimiza-
tion and learning. Suppose we have access to a small supervised dataset, sepa-
rate from the training and test dataset, that we call validation dataset. At the
end of every epoch, we track a metric of interest on the validation dataset, such
as the accuracy or the F1-score. We denote the score at the t-th epoch as at .
The idea of early stopping is to check this metric to see if it keeps improving:
if not, we may be entering an overfitting regime and we should stop training.
Because the accuracy can oscillate a bit due to random fluctuations, we do this
robustly by considering a window of k epochs (the patience):

If at ≤ ai, ∀i = t − 1, t − 1, . . . , t − k → Stop training

Wait for k epochs

For a high value of the patience hyper-parameter k, the algorithm will wait
more, but we will be more robust to possible oscillations. If we have a mecha-
nism to store the weights of the model (checkpointing) we can also rollback
the weights to the last epoch that showed improvement, corresponding to the
epoch number t − k.

Early stopping can be seen as a simple form of model selection, where we
select the optimal number of epochs based on a given metric. Differently from
the optimization of the model, we can optimize here for any metric of inter-
est, such as the F1-score, even if not differentiable. Interestingly, for large
over-parameterized models early stopping is not always beneficial, as the re-
lation between epochs and validation error can be non-monotone with mul-
tiple phases of ascent and descent (so-called multiple descents phenomenon
[RM22]). Hence, early stopping is useful mostly when optimizing on small
datasets.

9.2.3 Data augmentation

Generally speaking, the most effective method to improve performance for a
model is to increase the amount of available data. However, labelling data can
be costly and time-consuming, and generating data artificially (e.g., with the
help of large language models) requires customized pipelines to work effec-
tively [PRCB24].
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In many cases, it is possible to partially mitigate this issue by virtually increas-
ing the amount of available data by transforming them according to some pre-
specified number of (semantic preserving) transformations. As a simple exam-
ple, consider a vector input x and a transformation induced by adding Gaussian
noise:

x′ = x+ ϵ, ϵ ∼N (0,σ2I)

This creates a virtually infinite amount of data comprised in a small ball cen-
tered around x. In addition, this data must not be stored in the disk, and the
process can be simulated by applying the transformation at runtime every time
a new mini-batch is selected. In fact, it is known that training in this way can
make the model more robust and it is connected to ℓ2 regularization [Bis95].
However, vectorial data is unstructured, and adding noise with too high vari-
ance can generate points that are invalid.

For images, we can do better by noting that there is in general a large number
of transformations that can change an image while preserving its semantic:
zooms, rotations, brightness modifications, contrast changes, etc. Denote by
T (x; c) one such transformation (e.g., rotation), parameterized by some pa-
rameter c (e.g., the rotation angle). Most transformations include the base
image as a special case (in this case, for example, with a rotation angle c = 0).
Data augmentation is the process of transforming images during training ac-
cording to one or more of these transformations:

x ′ = T (x; c), c ∼ p(c)

where p(c) denotes the distribution of all valid parameters (e.g., rotation an-
gles between −20◦ and +20◦).

Data augmentation is very common for images (or similar data, such as audio
and video), but it requires a number of design choices: what transformations to
include, which parameters to consider, and how to compose these transforma-
tions. A simple strategy called RandAugment [CZSL20] considers a wide set
of transformations, and for every mini-batch samples a small number of them
(e.g., 2 or 3), to be applied sequentially with the same magnitude. Still, the
user must verify that the transformations are valid (e.g., if recognizing text,
horizontal flipping can make the resulting image invalid). From a practical
point of view, data augmentation can be included either as part of the data
loading components (see Box C.9.1), or as part of the model.
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# Image tensor (batch, channels, height, width)
img = torch.randint(0, 256, size=(32, 3, 256, 256))

# Data augmentation pipeline
from torchvision.transforms import v2
transforms = v2.Compose([

v2.RandomHorizontalFlip(p=0.5),
v2.RandomRotation(10),

])

# Applying the data augmentation pipeline: each function
# call returns a different mini-batch starting from the
# same input tensor.
img = transforms(img)

Box C.9.1: Data augmentation pipeline with two transformations applied in sequence,
taken from the torchvision package. In PyTorch, augmentations can be passed to the
data loaders or used independently. In other frameworks, such as TensorFlow and Keras,
data augmentation can also be included natively as layers inside the model.

Data augmentation pipelines and methods can be more complex than simple
intuitive transformations. Even for more sophisticated types, the intuition re-
mains that, as long as the network is able to solve a task in a complex scenario
(e.g., recognizing an object in all brightness conditions) it should perform even
better in a realistic, mild scenario. Additionally, data augmentation can pre-
vent overfitting by avoiding the repetition of the same input multiple times.

As an example of more sophisticated methods, we describe mixup [ZCDLP17]
for vectors, and its extension cutmix [YHO+19] for images. For the former,
suppose we sample two examples, (x1, y1) and (x2, y2). The idea of mixup is
to create a new, virtual example which is given by their convex combination:

x= λx1 + (1−λ)x2 (E.9.4)

y = λy1 + (1−λ)y2 (E.9.5)

where λ is chosen randomly in the interval [0,1]. This procedure should push
the model to have a simple (linear) output in-between the two examples, avoid-
ing abrupt changes in output. From a geometric viewpoint, for two points that
are close, we can think of (E.9.5) as slowly moving on the manifold as of the
data, by following the line that connects two points as λ goes from 0 to 1.
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Augmentation
1

Augmentation
2 ... Augmentation

n

Rotation Cutmix

Sample

Figure F.9.2: High-level overview of data augmentation. For every mini-batch, a set
of data augmentations are randomly sampled from a base set, and they are applied to
the images of the mini-batch. Here, we show an example of rotation and an example of
cutmix. Illustrations by John Tenniel, reproduced from Wikimedia.

mixup may not work for images, because linearly interpolating two images
pixel-by-pixel gives rise to blurred images. With cutmix, we sample instead a
small patch of fixed shape (e.g., 32 × 32) on the first image. Denote by M a
binary mask of the same shape as the images, with 1 for pixels inside the patch,
and 0 for pixels outside the patch. In cutmix, we combine two images x1 and
x2 by “stitching” a piece from the first one on top of the second one:

x =M⊙ x1 + (1−M)⊙ x2

while the labels are still linearly interpolated as before with a random coeffi-
cient λ. See Figure F.9.2 for an example.

9.3 Dropout and normalization

The strategies we have described in the previous section are very general, in
the sense that they imply modifications to the optimization algorithm or to the
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dataset itself, and they can be applied to a wide range of algorithms.

Instead, we now focus on three ideas that were popularized in the period be-
tween 2012 and 2016, mostly in the context of the ImageNet challenge. All
three are specific to differentiable models, since they can be implemented as
additional layers or connections in the model that simplify training of very
deep models. We list the methods in roughly chronological order. As we will
see in the remaining sections, these methods remain fundamental also beyond
convolutional models.

9.3.1 Regularization via dropout

When discussing data augmentation, we mentioned that one insight is that
augmentation forces the network to learn in a more difficult setup, so that its
performance in a simpler environment can improve in terms of accuracy and
robustness. Dropout [SHK+14] extends this idea to the internal embeddings of
the model: by artificially introducing noise during training to the intermediate
outputs of the model, the solution can improve.

There are many choices of possible noise types: for example, training with
small amounts of Gaussian noise in the activation has always been a popular al-
ternative in the literature of recurrent models. As the name suggests, dropout’s
idea is to randomly remove certain units (neurons) during the computation, re-
ducing the dependence on any single internal feature and (hopefully) leading
to training robust layers with a good amount of redundancy.

We describe dropout in the case of a fully-connected layer, which is its most
common use case.

Definition D.9.1 (Dropout layer) Denote by X ∼ (n, c) a mini-batch of in-
ternal activations of the model (e.g., the output of some intermediate fully-
connected layer) with n elements in the mini-batch and c features. In a
dropout layer, we first sample a binary matrix M ∼ Binary(n, c) of the same
size, whose elements are drawn from a Bernoulli distribution with probability
p (where p ∈ [0, 1] is a user’s hyper-parameter):

Mi j ∼ Bern(p) (E.9.6)
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Figure F.9.3: Schematic overview of dropout: starting from a base model, we add
additional units after each layer of interest, show in blue. At training time, each dropout
unit is randomly assigned a binary value, masking part of the preceding layers. Hence,
we select one out of exponentially many possible models having a subset of active hidden
units every time a forward pass is made. Dropout can also be applied at the input level,
by randomly removing some input features.

The output of the layer is obtained by masking the input:

Dropout(X) =M⊙X

The layer has a single hyper-parameter, p, and no trainable parameters.

We call 1− p the drop probability. Hence, for any element in the mini-batch,
a random number of units (approximately p% ) will be set to zero, effectively
removing them. This is shown in Figure F.9.3, where the additional dropout
units are shown in blue. Sampling the mask is part of the layer’s forward pass:
for two different forward passes, the output will be different since different
elements will be masked, as shown on the right in Figure F.9.3.

As the figure shows, we can implement dropout as a layer, which is inserted af-
ter each layer that we want to drop. For example, consider the fully-connected
model with two layers shown in Figure F.9.3:

y = (FC ◦ FC)(x)

Adding dropout regularization over the input and over the output of the first
layer returns a new model having four layers:

y = (FC ◦Dropout ◦ FC ◦Dropout)(x)
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model = nn.Sequential(
nn.Dropout(0.3),
nn.Linear(2, 3), nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(3, 1)

)

Box C.9.2: The model in Figure F.9.3 implemented as a sequence of four layers in Py-
Torch. During training, the output of the model will be stochastic due to the presence of
the two dropout layers.

See Box C.9.2 for an implementation in PyTorch.

While dropout can improve the performance, the output y is now a random
variable with respect to the sampling of the different masks inside the dropout
layers, which is undesirable after training. For example, two forward passes
of the network can return two different outputs, and some draws (e.g., with
a very large number of zeroes) can be suboptimal. Hence, we require some
strategy to replace the forward pass with a deterministic operation.

Suppose we have m dropout layers. Let us denote by Mi the mask in the i-
th dropout layer, by p(M1, . . . ,Mm) =

∏m
i=1 p(Mi) the probability distribution

over the union of the masks, and by f (x;M) the deterministic output once a
given set of masks M∼ p(M) are chosen. One choice is to replace the dropout
effect with its expected value during inference:

f (x) =

¨

f (x;M), M∼ p(M) [training]

Ep(M) [ f (x;M)] [inference]

We can approximate the expected value via Monte Carlo sampling (Appendix
A) by repeatedly sampling masks values and averaging:

Ep(M) [ f (x;M)]≈
1
k

k
∑

i=1

f (x;Zi), Zi ∼ p(M)

which is simply the average of k forward passes. This is called Monte Carlo
dropout [GG16]. The output is still stochastic, but with a proper choice of k,
the variance can be contained. In addition, the outputs of the different forward
passes can provide a measure of uncertainty on the prediction.
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x = torch.randn((16, 2))

# Training with dropout
model.train()
y = model(x)

# Inference with dropout
model.eval()
y = model(x)

# Monte Carlo dropout for inference
k = 10
model.train()
y = model(x[:, None, :].repeat(1, k, 1)).mean(1)

Box C.9.3: Applying the model from Box C.9.2 on a mini-batch of 16 examples. For
layers like dropout, a framework requires a way to differentiate between a forward pass
executed during training or during inference. In PyTorch, this is done by calling the
train and eval methods of a model, which set an internal train flag on all layers.
We also show a vectorized implementation of Monte Carlo dropout.

However, performing multiple forward passes can be expensive. A simpler
(and more common) option is to replace the random variables layer-by-layer,
which is a reasonable approximation. The expected value in this case can be
written in closed form:

Ep(M) [Dropout(X)] = pX

which is the input rescaled by a constant factor p (the probability of sampling a
1 in the mask). This leads to an even simpler formulation, inverted dropout,
where this correction is accounted for during training:

Dropout(X) =







M ◦X
(1− p)

[training]

X [inference]

In this case, the dropout layer has no effect when applied during inference
and can be directly removed. This is the preferred implementation in most
frameworks. See Box C.9.3 for some comparisons.
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As we mentioned, dropout (possibly with a low drop probability, such as p =
0.1 or p = 0.2) is common for fully-connected layers. It is also common for
attention maps (introduced in the next chapter). It is less common for convo-
lutional layers, where dropping single elements of the input tensor results in
sparsity patterns which are too unstructured. Variants of dropout have been
devised which take into consideration the specific structure of images: for ex-
ample, spatial dropout [TGJ+15] drops entire channels of the tensor, while
cutout [DT17] drops spatial patches of a single channel.

Other alternatives are also possible. For example, DropConnect [WZZ+13]
drops single weights of a fully-connected layer:

DropConnect(x) = (M⊙W)x+ b

DropConnect in inference can also be approximated efficiently with moment
matching [WZZ+13]. However, these are less common in practice, and the
techniques described next are preferred.

9.3.2 Batch (and layer) normalization

When dealing with tabular data, a common pre-processing operation that we
have not discussed yet is normalization, i.e., ensuring that all features (all
columns of the input matrix) share similar ranges and statistics. For example,
we can pre-process the data to squash all columns in a [0, 1] range (min-max
normalization) or to ensure a zero mean and unitary variance for each column
(called either standard scaling or normal scaling or z-score scaling).

Batch normalization (BN, [IS15]) replicates these ideas, but for the interme-
diate embeddings of the model. This is non trivial, since the statistics of a
unit (e.g., its mean) will change from iteration to iteration after each gradient
descent update. Hence, to compute the mean of a unit we should perform a
forward pass on the entire training dataset at every iteration, which is unfea-
sible. As the name implies, BN’s core idea is to approximate these statistics
using only the data in the mini-batch itself.

Consider again the output of any fully-connected layer X ∼ (n, c), where n is
the mini-batch size. We will see shortly how to extend the ideas to images
and other types of data. In BN, we normalize each feature (each column of
X) to have zero mean and unitary variance, based on the mini-batch alone. To
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this end, we start by computing the empirical column-wise mean µ ∼ (c) and
variances σ2 ∼ (c):

Mean of column j: µ j =
1
n

∑

i

X i j (E.9.7)

Variance of column j: σ2
j =

1
n

∑

i

(X i j −µ j)
2 (E.9.8)

We then proceed to normalize the columns:

X′ =
X−µ
p
σ2 + ϵ

Set the mean of each column to 0

Set the variance of each column to 1

where we consider the standard broadcasting rules (µ and σ2 are broadcasted
over the first dimension), and ϵ > 0 is a small positive term added to avoid
division by zero. Differently from normalization for tabular data, where this
operation is applied once to the entire dataset before training, in BN this op-
eration must be recomputed for every mini-batch during each forward pass.

The choice of zero mean and unitary variance is just a convention, not neces-
sarily the best one. To this end, we can let the optimization algorithm select
the best choice, for a small overhead in term of parameters. Consider two
trainable parameters α ∼ (c) and β ∼ (c) (which we can initialize as 1 and 0
respectively), we perform:

X′′ = αX′ + β

with similar broadcasting rules as above. The resulting matrix will have mean
βi and variance αi for the i-th column. The BN layer is defined by the combi-
nation of these two operations.

Definition D.9.2 (Batch normalization layer) Given an input matrix X∼
(n, c), a batch normalization (BN) layer applies the following normaliza-
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tion:

BN(X) = α
�

X−µ
p
σ2 + ϵ

�

+ β

where µ andσ2 are computed according to (E.9.7) and (E.9.8), while α∼ (c)
and β ∼ (c) are trainable parameters. The layer has no hyper-parameters.
During inference, µ and σ2 are fixed as described next.

The layer has only 2c trainable parameters, and it can be shown to greatly sim-
plify training of complex models when inserted across each block. In particular,
it is common to consider BN placed in-between the linear and non-linear com-
ponents of the model:

H= (ReLU ◦ BN ◦ Linear)(X)

Centering the data before the ReLU can lead to better exploiting its negative
(sparse) quadrant. In addition, this setup renders the bias in the linear layer
redundant (as it conflates with the β parameter), allowing to remove it. Finally,
the double linear operation can be easily optimized by standard compilers in
most frameworks.

BN is so effective that is has led to a vast literature on understanding why
[BGSW18]. The original derivation considered a problem known as internal
covariate shift, i.e., the fact that, from the point of view of a single layer, the
statistics of the inputs it receives will change during optimization due to the
changes in weights of the preceding layers. However, current literature agrees
that the effects of BN is more evident in the optimization itself, both in terms of
stability and the possibility of using higher learning rates, due to a combination
of scaling and centering effects on the gradients [BGSW18].6

Extending BN beyond tabular data is simple. For example, consider a mini-
batch of image embeddings X ∼ (n, h, w, c). We can apply BN on each channel
by considering the first three dimensions together, i.e., we compute a channel-
wise mean as:

6See also https://iclr-blog-track.github.io/2022/03/25/unnormalized-

resnets/ for a nice entry point into this literature (and the corresponding literature
on developing normalizer-free models.
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µz =
1

nhw

∑

i, j,k

X i jkz

Mean of channel z (all pixels, all images)

Batch normalization during inference

BN introduces a dependency between the prediction over an input and the
mini-batch it finds itself in, which is unwarranted during inference (stated dif-
ferently, moving an image from one mini-batch to another will modify its pre-
diction). However, we can exploit the fact that the model’s parameters do not
change after training, and we can freeze the mean and the variance to a preset
value. There are two possibilities to this end:

1. After training, we perform another forward pass on the entire training set
to compute the empirical mean and variance with respect to the dataset
[WJ21].

2. More commonly, we can keep a rolling set of statistics that are updated
after each forward pass of the model during training, and use these after
training. Considering the mean only for simplicity, suppose we initialize
another vector bµ = 0, corresponding to the “rolling mean of the mean”.
After computing µ as in (E.9.7), we update the rolling mean with an
exponential moving average:

bµ← λbµ+ (1−λ)µ

where λ is set to a small value, e.g., λ = 0.01. Assuming training con-
verges, the rolling mean will also converge to an approximation of the
average of point (1). Hence, after training we can use BN by replacing
µ with the (pre-computed) bµ, and similarly for the variance.

Variants of batch normalization

Despite its good empirical performance, BN has a few important drawbacks.
We have already mentioned the dependence on the mini-batch, which has other
implications: for example, the variance of µ during training will grow large for
small mini-batches, and training can be unfeasible for very small mini-batch
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Figure F.9.4: Comparison be-
tween BN and LN for tabular and
image data. Blue regions show
the sets over which we compute
means and variances. For LN we
have two variants, discussed bet-
ter in the main text.
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sizes. In addition, training can be difficult in distributed contexts (where each
GPU holds a separate part of the mini-batch). Finally, replacing µ with a dif-
ferent value after training creates an undesirable mismatch between training
and inference.

Variants of BN have been proposed to address this issue. A common idea is
to keep the overall structure of the layer, but to modify the axes along which
the normalization is performed. For example, layer normalization [BKH16]
computes the empirical mean and variance over the rows of the matrix, i.e., for
each input independently:

Mean of row i: µi =
1
c

∑

j

X ji (E.9.9)

Variance of row i: σ2
i =

1
c

∑

j

(X ji −µi)
2 (E.9.10)

Consider Figure F.9.4, where we show a comparison between BN and LN for
tabular and image-like data. In particular, we show in blue all the samples
used to compute a single mean and variance. For layer normalization, we can
compute the statistics on h, w, c simultaneously (variant A) or for each spatial
location separately (variant B). The latter choice is common in transformer
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models, discussed in the next chapter. Other variants are also possible, e.g.,
group normalization restricts the operation to a subset of channels, with the
case of a single channel known as instance normalization.7

In BN, the axes across which we compute the statistics in (E.9.7) and (E.9.8)
are the same as the axes across which we apply the trainable parameters. In
LN, the two are decoupled. For example, consider a PyTorch LN layer applied
on mini-batches of dimension (b, 3, 32, 32):

ln = nn.LayerNorm(normalized_shape=[3, 32, 32])

This corresponds to variant A in Figure F.9.4. In this case, α and β will have the
same shape as the axes over which we are computing the normalization, i.e.,
α,β ∼ (3, 32,32), for a total of 2× 3× 32× 32 = 6144 trainable parameters.
The specific implementation of LN and BN must be checked for each framework
and model.

We close by mentioning another common variant of layer normalization, called
root mean square normalization (RMSNorm) [ZS19]. It simplifies LN by re-
moving the mean centering and shifting, which for a single input vector x∼ (c)
can be written as:

RMSNorm(x) =
x

q

1
c

∑

i x2
i

⊙α (E.9.11)

When β = 0 and the data is already zero-centered, LN and RMSNorm are
identical.

9.4 Residual connections

9.4.1 Residual connections and residual networks

The combination of all techniques seen in the previous section is enough to
increase significantly the number of layers in our models, but only up to a
certain upper bound. Consider three generic sequence of layers f1, f2, and f3,

7See https://iclr-blog-track.github.io/2022/03/25/unnormalized-resnets/

for a nicer variant of Figure F.9.4.
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Figure F.9.5: Bigger models
do not always improve mono-
tonically in training error, de-
spite representing larger classes
of functions. Reproduced from
[HZRS16].

and two models where one is a subset of the other:

g1(x) = ( f3 ◦ f1)(x)
g2(x) = ( f3 ◦ f2 ◦ f1)(x)

Intuitively, by the universal approximation theorem it should always be possi-
ble for the intermediate part, f2, to approximate the identity function f2(x) ≈
x , in which case g2(x)≈ g1(x). Hence, there is always a setting of the param-
eters in which the second (deeper) model should perform at least as well as
the first (shallower) one. However, this was not observed in practice, as shown
in Figure F.9.5.

We can solve this by biasing the blocks in the network towards the identity
function. This can be done easily by rewriting a block f (x) with what is called
a residual (skip) connection [HZRS16]:

r(x) = f (x) + x

Hence, we use the block to model deviations from the identity, f (x) = r(x)−x ,
instead of modeling deviations from the zero function. This small trick alone
helps in training networks up to hundreds of layers. We call f (x) the residual
path, r(x) a residual block, and a convolutional model composed of residual
blocks a residual network (abbreviated to ResNet).

Residual connections work well with batch normalization on the residual path,
which can be shown to further bias the model towards the identity at the be-
ginning of training [DS20]. However, residual connections can be added only
if the input and output dimensionality of f (x) are identical. Otherwise, some
rescaling can be added to the residual connection. For example, if x is an image
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and f (x) modifies the number of channels, we can add a 1× 1 convolution:

r(x) = f (x) +Conv2D1×1(x)

The benefit of a residual block can be understood also in terms of its backward
pass. Consider the VJP of the residual block:

vjpr(v) = vjp f (v) + v⊤I= vjp f (v) + v⊤

VJP of f

VJP of the skip connection

Hence, the forward pass lets the input x pass through unmodified on the skip
connection, while the backward pass adds the unmodified back-propagated
gradient v to the original VJP, which can help mitigating gradient instabilities.

On the design of the residual block

How to design the block f (x)? Consider the batch-normalized block intro-
duced earlier:

h= (ReLU ◦ BN ◦Conv2D)
︸ ︷︷ ︸

= f (x)

(x) + x

Because the output of ReLU is always positive, we have that h ≥ x (element-
wise). Hence, a stack of residual blocks of this form can only increase the
values of the input tensor, or set it to zero. For this reason, the original design
proposed in [HZRS16] considered a stack of blocks of this form by removing the
last activation function. As an example, for two blocks we obtain the following
design:

h= (BN ◦Conv2D ◦ReLU ◦ BN ◦Conv2D)(x) + x

A series of blocks of this form can be preceded by a small component with
non-residual connections to reduce the image dimensionality, sometimes called
the stem. The specific choice of hyper-parameters for this block has varied
significantly over the years.

The original ResNet block proposed a compression in the number of channels
for the first operation, followed by a standard 3 × 3 convolution and a final
upscaling in the number of channels. Recently, instead, bottleneck layers like
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Figure F.9.6: The original
ResNet block [LMW+22],
and the more recent ResNeXt
[LMW+22] block. As can be
seen, the design has shifted
from an early channel reduc-
tion to a later compression
(bottleneck). Additional de-
tails (not shown) are the switch
from BN to LN and the use
of GELU activation functions.
Adapted from [LMW+22].
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1x1 Convolution
96 channels

Input (96 channels)

the ConvNeXt block [LMW+22] (on the right in Figure F.9.6) have become
popular. To increase the receptive field of the convolution, the initial layer
is replaced by a depthwise convolution. To exploit the reduced number of
parameters, the number of channels is increased by a given factor (e.g., 3×,
4×), before being reduced by the last 1× 1 convolution.

9.4.2 Additional perspectives on residual connections

We provide here two interesting perspectives on the use of residual connec-
tions, which have both been explored in-depth in current research. First, con-
sider a network composed of two residual blocks:

h1 = f1(x) + x (E.9.12)

h2 = f2(h1) + h1 (E.9.13)

If we unroll the computation:

h2 = f2( f1(x) + x) + f1(x) + x

This corresponds to the sum of several paths in the network, where the input is
either left unmodified, it goes through only a single transformation ( f1 or f2),
or through their combination.

It should be clear that the number of such paths grow exponentially with the
number of residual blocks. Hence, deep residual models can be seen as a com-
bination (an ensemble) of a very large number of smaller models, implemented
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Figure F.9.7: Residual paths:
the black, red, and blue paths are
implemented explicitly; the green
path is only implicit.

through weight-sharing. This view can be tested to show, for example, that
ResNets tend to be robust to small deletions or modifications of their elements
[VWB16]. This is shown visually in Figure F.9.7.

Second, consider the following differential equation, expressed in terms of con-
tinuous parameter t representing time:

∂t x t = f (x , t)

We are using a neural network with arguments x and t (a scalar) to parameter-
ize the time derivative of some function. This is called an ordinary differential
equation (ODE). A common problem with ODEs is integrating from a known
starting value x0 up to some specified time instant T :

xT = x0 +

∫ T

t=0

f (x , t)d t

Euler’s method8 for computing xT works by selecting a small step size h and
computing iteratively a first-order discretization:

x t = x t−1 + hf (x t−1, t)

Merging h into f , this corresponds to a restricted form of residual model, where
all residual blocks share the same weights, each layer corresponds to a dis-
cretized time-instant, and xT is the output of the network. Under this point
of view, we can directly work with the original continuous-time equation, and
compute the output by integrating it with modern ordinary differential equa-
tion (ODE) solvers. This is called a neural ODE [CRBD18]. Continuous-time
variants of back-propagation can be derived that take the form of another ODE
problem.

8https://en.wikipedia.org/wiki/Euler_method
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Part III

Down the rabbit-hole

“It would be so nice if something made sense for a change.”

—Alice in Wonderland, 1951 movie

167
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About this chapter

Convolutional models are strong baselines, especially for images and se-
quences where local relations prevail, but they are limited in handling
very long sequences or non-local dependencies between elements of a
sequence. In this chapter we introduce another class of models, called
transformers, which are designed to overcome such challenges.

10.1 Introduction

After the key developments in the period 2012-2016, discussed in the previous
chapter, the next important breakthrough in neural networks came in 2016-
2017 with the popularization of the transformer [VSP+17], an architecture
designed to handle efficiently long-range dependencies in natural language
processing. Due to its strong scaling laws, the architecture was then extended
to other types of data, from images to time-series and graphs, and it is today
a state-of-the-art model in many fields due to its very good scaling laws when
trained on large amounts of data [KMH+20].

As we will see, an interesting aspect of the transformer is a decoupling between
the data type (through the use of appropriate tokenizers) and the architecture,
which for the most part remains data-agnostic. This opens up several interest-
ing directions, such as simple multimodal architectures and transfer learning
strategies. We begin by motivating the core component of the transformer,
called the multi-head attention (MHA) layer.
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A bit of history

Historically, this chapter is out of order: in 2015, the most common al-
ternative to CNNs for text were recurrent neural networks (RNNs). As
an isolated component, MHA was introduced for RNNs [BCB14], before
being used as the core component in the transformer model. We cover
RNNs and their modern incarnation, linearized RNNs, in Chapter 13. Re-
cently, RNNs have become an attractive competitor to transformers for
language modeling.

10.1.1 Handling long-range and sparse dependencies

Consider these two sentences:

“The cat is on the table”

and the longer one:

“The cat, who belongs to my mother, is on the table”.

In order to be processed by a differentiable model, the sentences must be tok-
enized and embedded (Chapter 8). From a semantic point of view, the tokens
belonging to the red word (cat) and to the green word (table) share a similar
dependency in both sentences. However, their relative offset varies in the two
cases, and their distance can become arbitrarily large. Hence, dependencies in
text can be both long-range and input-dependent.

Denote by X∼ (n, e) a sentence of n tokens embedded in e-dimensional vectors
and denote by xi the ith token. We can rewrite a 1D convolution with kernel
size k on token i as follows:

hi =
2k+1
∑

j=1

W jxi+k+1− j (E.10.1)

Each token inside the receptive field is processed with a fixed weight matrix Wi

that only depends on the specific offset i. Modeling long-range dependencies
inside the layer requires us to increase the receptive field of the layer, increasing
the number of parameters linearly in the receptive field.
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Input
tokens

Output
tokens

(a) Conv1D, kernel size 3 (b) Continuous convolution (c) Non-local model

Output token Input token inside the
Conv1D receptive field

Input token outside the
Conv1D receptive field

Figure F.10.1: Comparison between different types of convolution for a 1D sequence. We
show how one output token (in red ) interacts with two tokens, one inside the receptive

field of the convolution (in green ), and one outside (in blue ). (a) In a standard
convolution, the blue token is ignored because it is outside of the receptive field of the
filter. (b) For a continuous convolution, both tokens are considered, and the resulting
weight matrices are given by g(−1) and g(2) respectively. (c) In the non-local case, the
weight matrices depend on a pairwise comparison between the tokens themselves.

One possibility to solve this is the following: instead of explicitly learning the
parameter matrices W1,W2, . . ., we can define them implicitly by defining a
separate neural block g(i) : R→ Re×e that outputs all weight matrices based
on the relative offset i. Hence, we rewrite (E.10.1) as:

hi =
n
∑

j=1

g(i − j)x j

The sum is now on all tokens

This is called a long convolution, as the convolution spans the entire input
matrix X. It is also called a continuous convolution [RKG+22], because we
can use g(·) to parameterize intermediate positions or variable resolutions
[RKG+22]. The number of parameters in this case only depends on the param-
eters of g, while it does not depend on n, the length of the sequence. Defining
g is non-trivial because it needs to output an entire weight matrix. We can
recover a standard convolution easily:

g(i, j) =

¨

Wi− j if |i − j| ≤ k
0 otherwise

(E.10.2)

171



172 Introduction

This partially solves the problem of long-range dependencies, but it does not
solve the problem of dependencies which are conditional on the input, since
the weight given to a token depends only on the relative offset with respect
to the index i. However, this formulation provides a simple way to tackle this
problem by letting the trained function g depend on the content of the tokens
instead of their positions:

hi =
n
∑

j=1

g(xi,x j)x j (E.10.3)

In the context of computer vision, these models are also called non-local net-
works [WGGH18]. We provide a comparison of standard convolutions, con-
tinuous convolutions, and non-local convolutions in Figure F.10.1.

10.1.2 The attention layer

The MHA layer is a simplification of (E.10.3). First, working with functions
having matrix outputs is difficult, so we restrict the layer to work with scalar
weights. In particular, a simple measure of similarity between tokens is their
dot-product:

g(xi,x j) = x⊤i x j

As we will see, this results in an easily parallelizable algorithm for the entire se-
quence. For the following we consider a normalized version of the dot-product:

g(xi,x j) =
1
p

e
x⊤i x j

This can be motivated as follows: if we assume xi ∼ N (0,σ2I), the variance
of each element of x⊤i x j is σ4, hence the elements can easily grow very large
in magnitude. The scaling factor ensures that the variance of the dot product
remains bounded at σ2.

Because we are summing over a potentially variable number of tokens n, it is
also helpful to include a normalization operation, such as a softmax:

hi =
n
∑

j=1

softmax j(g(xi,x j))x j (E.10.4)
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In this context, we refer to g(·, ·) as the attention scoring function, and to
the output of the softmax as the attention scores. Because of the normaliza-
tion properties of the softmax, we can imagine that each token i has a certain
amount of “attention” it can allocate across the other tokens: by increasing the
budget on a token, the attention over the other tokens will necessarily decrease
due to the denominator in the softmax.

If we use a “dot-product attention”, our g does not have any trainable param-
eters. The idea of an attention layer is to recover them by adding trainable
projections to the input before computing the previous equation. To this end,
we define three trainable matrices Wk ∼ (k, e), Wv ∼ (v, e), Wq ∼ (k, e), where
k and v are hyper-parameters. Each token is projected using these three ma-
trices, obtaining 3n tokens in total:

Key tokens: ki =Wkxi (E.10.5)

Value tokens: vi =Wvxi (E.10.6)

Query tokens: qi =Wkxi (E.10.7)

These processed tokens are called the keys, the values, and the queries (you
can ignore the choice of terminology for now; we will return on this point at
the end of the section). The self-attention (SA) layer is obtained by combining
the three projections (E.10.5)-(E.10.6)-(E.10.7) with (E.10.4):

hi =
n
∑

j=1

softmax j(g(qi,k j))vj

Hence, we compute the updated representation of token i by comparing its
query to all possible keys, and we use the normalized weights to combine the
corresponding value tokens. Note that the dimensionality of keys and queries
must be identical, while the dimensionality of the values can be different.

If we use the dot product, we can rewrite the operation of the SA layer com-
pactly for all tokens. To this end, we define three matrices with the stack of all
possible keys, queries, and values:

K= XWk (E.10.8)

V= XWv (E.10.9)

Q= XWq (E.10.10)
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The three matrices have shape (n, k), (n, v), and (n, k) respectively. As a side
note, we can also implement them as a single matrix multiplication whose
output is chunked in three parts:





K
V
Q



= X





Wk

Wv

Wq





The SA layer is then written as:

SA(X) = softmax

�

QK⊤
p

k

�

V

where we assume the softmax is applied row-wise. We can also make the
projections explicit, as follows.

Definition D.10.1 (Self-attention layer) The self-attention (SA) layer is
defined for an input X∼ (n, d) as:

SA(X) = softmax

�

XWqW
⊤
k X⊤

p
k

�

XWv (E.10.11)

The trainable parameters are Wq ∼ (k, d), Wk ∼ (k, d) and Wv ∼ (v, d),
where k and v are hyper-parameters. Hence, there are k(2d + v) trainable
parameters, independent of n.

We show the operation of the layer visually in Figure F.10.2.

10.1.3 Multi-head attention

The previous layer is also called a single-head attention operation. It allows
to model pairwise dependencies across tokens with high flexibility. However,
in some cases we may have multiple sets of dependencies to consider: taking
again the example of “the cat, which belongs to my mother, is on the table”,
the dependencies between “cat” and “table” are different with respect to the
dependencies between “cat” and “mother”, and we may want the layer to be
able to model them separately.
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Values

Softm
ax
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Figure F.10.2: Visualization of the main operations of the SA layer (excluding projec-
tions).

A multi-head layer achieves this by running multiple attention operations in
parallel, each with its own set of trainable parameters, before aggregating the
results with some pooling operation. To this end, we define a new hyper-
parameter h, that we call the number of heads of the layer. We instantiate
h separate projections for the tokens, for a total of 3hn tokens (3n for each
“head”):

Ke = XWk,e (E.10.12)

Ve = XWv,e (E.10.13)

Qe = XWq,e (E.10.14)

Wk,e represents the key projection for the e-th head, and similarly for the other
quantities. The multi-head attention (MHA) layer performs h separate SA
operations, stacks the resulting output embeddings, and projects them a final
time to the desired dimensionality:

MHA(X) =

�

softmax
�

Q1K⊤1p
k

�

V1 ∥ . . . ∥ softmax
�

QhK⊤hp
k

�

Vh

�

Wo

Individual SA layer

Output projection

Each SA operation returns a matrix of shape (n, v). These h matrices are con-
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d = dict()
d["Simone"] = 2
d["Simone"] # Returns 2
d["Smone "] # Returns an error

Box C.10.1: A dictionary in Python: a value is returned only if a perfect key-query
match is found. Otherwise, we get an error.

catenated across the second dimension to obtain a matrix (n, hv), which is then
projected with a matrix Wo ∼ (o, hv), where o is an additional hyper-parameter
allowing flexibility in the choice of the output dimensionality.

An explanation of the terminology

In order to understand why the three tokens are called queries, keys, and val-
ues, we consider the analogy of a SA layer with a standard Pyhon dictionary,
which is shown in Box C.10.1.

Formally, a dictionary is a set of pairs of the form (key, value), where the key
acts as an univocal ID to retrieve the corresponding value. For example, in the
third and fourth line of Box C.10.1 we query the dictionary with two different
strings (“Simone” and “Smone ”): the dictionary compares the query string to
all keys which are stored inside, returning the corresponding value if a perfect
match is found, an error otherwise.

Given a measure of similarity over pair of keys, we can consider a variant of
a standard dictionary which always returns the value corresponding to the
closest key found in the dictionary. If the keys, queries, and values are vectors,
this dictionary variant is equivalent to our SA layer if we replace the softmax
operation with an argmax over the tokens, as shown in Figure F.10.3.

This “hard” variant of attention is difficult to implement because the gradients
of the argmax operation are zero almost everywhere (we will cover discrete
sampling and approximating the argmax operation with a discrete relaxation in
the next volume). Hence, we can interpret the SA layer as a soft approximation
in which each token is updated with a weighted combination of all values based
on the corresponding key/query similarities.
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     1,      0

Argm
ax

Figure F.10.3: SA with a “hard” attention is equivalent to a vector-valued dictionary.

10.2 Positional embeddings

With the MHA layer in hand, we consider the design of the complete trans-
former model, which requires another component, positional embeddings.

10.2.1 Permutation equivariance of the MHA layer

It is interesting to consider what happens to the output of a MHA layer when the
order of the tokens is re-arranged (permuted). To formalize this, we introduce
the concept of permutation matrices.

Definition D.10.2 (Permutation matrix) A permutation matrix of size n
is a square binary matrix P∼ Binary(n, n) such that only a single 1 is present
on each row or column:

1⊤P= 1, P1= 1

The effect of applying a permutation matrix is to rearrange the corresponding
rows / columns of a matrix. For example, consider the following permutation:

P=





1 0 0
0 0 1
0 1 0





Looking at the rows, we see that the second and third elements are swapped
by its application:

P





x1

x2

x3



=





x1

x3

x2




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MHA

MHA

Figure F.10.4: The output of a MHA layer after permuting the ordering of the tokens is
trivially the permutation of the original outputs.

Interestingly, the only effect of applying a permutation matrix to the inputs of
a MHA layer is to rearrange the outputs of the layer in an equivalent way:

MHA(PX) = P · MHA(X)

This is immediate to prove. We focus on the single headed variant as the multi-
headed variant proceeds similarly. First, the softmax renormalizes the elements
over the columns of a matrix, so it is trivially permutation equivariant across
both rows and columns:

softmax(PXP⊤) = P [softmax(X)]P⊤

From this we can immediately deduce the positional equivariance of SA:

SA(PX) = softmax

�

P
XWqW

⊤
k X⊤

p
k

P⊤
�

PXWv (E.10.15)

= Psoftmax

�

XWqW
⊤
k X⊤

p
k

�

XWv = PSA(X) (E.10.16)

where we make use of the fact that P⊤P = I for any permutation matrix. This
can also be seen by reasoning on the SA layer for each token: the output is
given by a sum of elements, each weighted by a pairwise comparison. Hence,
for a given token the operation is permutation invariant. Instead, for the
entire input matrix, the operation is permutation equivariant.
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Translational equivariance was a desirable property for a convolutive layer, but
permutation equivariance is undesirable (at least here), because it discards the
valuable ordering of the input sequence. As an example, the only effect of
processing a text whose tokens have been reversed would be to reverse the
output of the layer, despite the fact that the resulting reversed input is proba-
bly invalid. Formally, the SA and MHA layers are set functions, not sequence
functions.

Instead of modifying the layer or adding layers that are not permutation equiv-
ariant, the transformer operates by introducing the new concept of positional
embeddings, which are auxiliary tokens that depend only on the position of
a token in a sequence (absolute positional embeddings) or the offset of two
tokens (relative positional embeddings). We describe the two in turn.

10.2.2 Absolute positional embeddings

Each token in the input matrix X ∼ (n, e) represents the content of the spe-
cific piece of text (e.g., a subword). Suppose we fix the maximum length of
any sequence to m tokens. To overcome positional equivariance, we introduce
an additional set of positional embeddings S ∼ (m, e), where the vector Si

uniquely encodes the concept of “being in position i”. Hence, the sum of the
input matrix with the first rows of S:

X′ = X+ S1:n

is such that [X′]i represents “token Xi in position i”. Because it does not make
sense to permute the positional embeddings (as they only depend on the posi-
tion), the resulting layer is not permutation equivariant anymore:

MHA(PX+ S) ̸= P · MHA(X+ S)

See Figure F.10.5 for a visualization of this idea.

How should we build positional embeddings? The easiest strategy is to con-
sider S as part of the model’s parameters, and train it together with the rest
of the trainable parameters, similarly to the token embeddings. This strategy
works well when the number of tokens is relatively stable; we will see an ex-
ample in the next chapter in the context of computer vision.
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Figure F.10.5: Positional em-
beddings ( green ) added to the

tokens’ embeddings ( red ). The
same token in different positions
has different outputs ( blue ).
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Alternatively, we can define some deterministic function from the set of tokens’
positions to a given vector that uniquely identifies the position. Some strategies
are clearly poor choices, for example:

1. We can associate to each position a scalar p = i/m which is linearly
increasing with the position. However, adding a single scalar to the token
embeddings has a minor effect.

2. We can one-hot encode the position into a binary vector of size m, but
the resulting vector would be extremely sparse and high-dimensional.

A possibility, introduced in the original transformer paper [VSP+17], is that of
sinusoidal embeddings. To understand them, consider a sine function:

y = sin(x)

The sine assigns a unique value to any input x inside the range [0,2π]. We
can also vary the frequency of the sine:

y = sin(ωx)

This oscillates more or less rapidly based on the frequency ω, and it assigns
a unique value to any input in the range [0, 2π

ω ]. There is an analogy with an
(analogical) clock: the minute hand makes a full rotation with a frequency of
1
60 Hz (once every minute). Hence, every “point in time” inside a minute can
be distinguished by looking at the hand, but two time instants in general can
only be identified modulo 60 seconds. We overcome this in a clock by adding
a separate hand (the hour hand) that rotates with a much slower frequency
of 1

3600 Hz. Hence, by looking at the pair of coordinates (hour, minute) (the
“embedding” of time) we can distinguish any point inside an hour. Adding yet
another hand with an even slower frequency (the day hand) we can distinguish
any point inside a day. This can be generalized: we could design clocks with
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Figure F.10.6: We show
three sin functions with
ω = 0.1, ω = 1, and ω = 10.
The embedding for position
x = 6 is given by the corre-
sponding values (red circles).
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lower or higher frequencies to distinguish months, years, or milliseconds.

A similar strategy can be applied here: we can distinguish each position i by
encoding it through a set of e sines (with e an hyper-parameter) of increasing
frequencies:

Si = [sin(ω1i), sin(ω2i), . . . , sin(ωei)]

In practice, the original proposal from [VSP+17] uses only e/2 possible fre-
quencies, but adds both sines and cosines:

Si =
�

sin(ω1i), cos(ω1i), sin(ω2i), cos(ω2i), . . . , sin(ωe/2i), cos(ωe/2i)
�

This can be justified by noting that in this embedding, two positions are related
via a simple linear transformation, a rotation, that depends only on the relative
offset of the two positions.1 Any choice of frequency is valid provided they
are sufficiently large and increasing at a super-linear rate. The choice from
[VSP+17] was a geometric progression:

ωi =
1

10000i/e

that varies from ω0 = 1 to ωe =
1

10000 . See Figure F.10.6 for a visualization.

1See https://kazemnejad.com/blog/transformer_architecture_positional_

encoding/ for a worked-out computation.
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10.2.3 Relative positional embeddings

Trainable positional embeddings and sinuisodal positional embeddings are ex-
amples of absolute embeddings, because they encode a specific position in the
sequence. An alternative that has become common with very long sequences
are relative positional embeddings. In this case, instead of adding a posi-
tional encoding to a token, we modify the attention function to make it depen-
dent on the offset between any two tokens:

g(xi,x j)→ g(xi,x j, i − j)

This is a combination of the two ideas we introduced at the beginning of this
chapter (Figure F.10.1). Note that while absolute embeddings are added only
once (at the input), relative embeddings must be added every time an MHA
layer is used. As an example, we can add a trainable bias matrix B ∼ (m, m)
and rewrite the dot product with an offset-dependent bias:

g(xi,x j) = x⊤i x j + Bi j

A simpler variant, attention with linear biases (ALiBi) [PSL21], considers a
single trainable scalar in each head which is multiplied by a matrix of offsets.
More advanced strategies, such as rotary positional embeddings (RoPE), are
also possible [SAL+24].

10.3 Building the transformer model

10.3.1 The transformer block and model

A model could be built, in principle, from a stack of multiple MHA layers (with
the softmax providing the non-linearity necessary to avoid the collapse of mul-
tiple linear projections). Empirically, however, it is found that the MHA works
best when interleaved with a separate fully-connected block that operates on
each token independently. These two operations can be understood as mixing
the tokens (MHA), and mixing the channels (MLP), similarly to the depthwise-
separable convolution model.

In particular, for the MLP block it is common to choose a bottleneck architecture
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Figure F.10.7: Schematic view of pre-
normalized and post-normalized trans-
former blocks. In the post-normalized
variant the LN block is applied after the
MHA or MLP operation, while in the pre-
normalized one before each layer. MHA

LN

Inputs

MLP

LN

(a) Post-normalized block

MHA

LN

Inputs

MLP

LN

(b) Pre-normalized block

composed of two fully-connected layers of the form:

MLP(x) =W2φ (W1x)

where x ∼ (e) is a token, W1 ∼ (p, e), with p selected as an integer multiple
of e (e.g., p = 3e or p = 4e), and W2 ∼ (e, p) reprojecting back to the original
embedding dimension. Biases are generally removed as the increased hidden
dimension provides sufficient degrees of freedom.

To ensure efficient training of deep models we also need a few additional reg-
ularization strategies. In particular, it is common to include two layer normal-
ization steps and two residual connections, respectively for the MHA and MLP
blocks. Depending on where the layer normalization is applied, we obtain two
variants of the basic transformer block, sometimes denoted as pre-normalized
and post-normalized. These are shown in Figure F.10.7.

While the post-normalized version corresponds to the original transformer block,
the pre-normalized variant is generally found to be more stable and faster to
train [XYH+20]. The design of the block in Figure F.10.7 is, fundamentally,
an empirical choice, and many variants have been proposed and tested in the
literature. We review some of these later on in Section 11.3.

We can now complete the description of a basic transformer model:

1. Tokenize and embed the original input sequence in a matrix X∼ (n, e).
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2. If using absolute positional embeddings, add them to the input matrix.

3. Apply 1 or more blocks of the form discussed above.

4. Include a final head depending on the task.

The output of step (3) is a set of processed tokens H ∼ (n, e), where neither
n nor e are changed by the transformer model (the former because we do not
have pooling operations on sets, the latter because of the residual connections
in the block). Considering for example a classification task, we can apply a
standard classification head by pooling over the tokens and proceeding with a
fully-connected block:

y = softmax

�

MLP

�

1
n

∑

i

Hi

��

This part is identical to its corresponding CNN design. However, the trans-
former has a number of interesting properties, mostly stemming by the fact that
it manipulates its input as a set, without modifying its dimensionality through
the architecture. We investigate one simple example next.

10.3.2 Class tokens and register tokens

While up to now we have assumed that each token corresponds to one part of
our input sequence, nothing prevents us from adding additional tokens to the
input of the transformer. This is strictly dependent on its specific architecture:
a CNN, for example, requires its input to be precisely ordered, and it is not
clear how we could add additional tokens to an image or to a sequence. This is
a very powerful idea, and we only consider two specific implementations here.

First, we consider the use of a class token [DBK+20], an additional token
which is added explicitly for classification in order to replace the global pooling
operation above. Suppose we initialize a single trainable token c∼ (e), which
is added to the input matrix:

X←
�

X
c⊤

�

The new matrix has shape (n + 1, e). The class token is identical for all se-
quences in a mini-batch. After step (3) above, the transformer outputs a ma-
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trix H∼ (n+1, e) of updated representations for all tokens, including the class
one. The idea is that, instead of pooling over the tokens, the model should be
able to “compress” all information related to the classification task inside the
class token, and we can rewrite the classification head by simply discarding all
other tokens:

y = softmax (MLP (Hn+1))

Additional trainable tokens can be useful even if not explicitly used. For exam-
ple, [DOMB23] has shown that adding a few additional tokens (called regis-
ters in this case) can improve the quality of the attention maps by providing the
model with the possibility of using the registers to “store” auxiliary information
that does not depend explicitly on a given position.
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About this chapter

We now consider a few variations of the basic transformer model, in par-
ticular: encoder-decoder architectures, causal MHA layers, and applica-
tions to the image and audio domains.

11.1 Encoder-decoder transformers

The model we described up to now can be used to perform regression or classi-
fication of a given sequence. However, the original transformer [VSP+17] was
a more complex model, designed for what are called sequence-to-sequence
(seq2seq) tasks. In a seq2seq task, both input and output are sequences, and
there is no trivial correspondence between their tokens. A notable example
is machine translation, in which the output is the translation of the input
sequence in a different language.

One possibility to build neural networks for seq2seq tasks is an encoder-decoder
(ED) design [SVL14]. An ED model is composed of two blocks: an encoder
that processes the input sequence to a transformed representation (possibly
of a fixed dimensionality), and a decoder that autoregressively generates the
output sequence conditioned on the output of the encoder. The transformer
model we described before can be used to build the encoder: transformers of
this type for classification are called encoder-only transformers. In order to
build the decoder we need two additional components: a way to make the
model causal (to perform autoregression), and a way to condition its compu-
tation to a separate input (the output of the encoder).
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Figure F.11.1:
Visual depiction of
causal attention
implemented with
attention masking.

Softm
ax

11.1.1 Causal multi-head attention

Let us consider first the problem of making the transformer block causal. The
only component in which tokens interact is the MHA block. Hence, having a
causal variant of MHA is enough to make the entire model causal. Remember
that, for convolutions, we designed a causal variant by appropriately mask-
ing the weights in the convolutional filter. For MHA, we can mask instead all
interactions between tokens that do not satisfy the causality property:

Masked-SA(X) = softmax

�

QK⊤⊙M
p

k

�

V

It is essential to perform the masking inside the softmax. Consider the follow-
ing (wrong) variant:

Wrong:

�

softmax

�

QK⊤
p

k

�

⊙M

�

V

Because of the denominator in the softmax, all tokens participate in the com-
putation of each token, irrespective of the later masking. Also note that setting
Mi j = 0 for non-causal links does not work, because exp(0) = 1. Hence, the
correct implementation of a masked variant of MHA is to select an upper tri-
angular matrix with −∞ on the upper part, since exp(−∞) = 0 as desired:

Mi j =

¨

−∞ if i > j
0 otherwise

Practically, the values can be set to a very large, negative number instead (e.g.,
−109).
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11.1.2 Cross-attention

Second, let us consider the problem of making the output of the MHA layer
depend on a separate block of inputs. To this end, let us rewrite the MHA
operation by explicitly separating the three appearances of the input matrix:

SA(X1,X2,X3) = softmax

�

X1WqW
⊤
k X⊤2p

k

�

X3Wv

The SA layer corresponds to X1 = X2 = X3 = X (which, coincidentally, ex-
plains the name we gave to it). However, the formulation also works if we
consider keys, values, and queries belonging to separate sets. One important
case is cross-attention (CA), in which we assume that the keys and values are
computed from a second matrix Z∼ (m, e):

CA(X,Z) = SA(X,Z,Z) = softmax





XWqW
⊤
k Z⊤

p
k



XWv (E.11.1)

Cross-attention between X and Z

The interpretation is that the embeddings of X are updated based on their sim-
ilarity with a set of external (key, values) pairs provided by Z: we say that X is
cross-attending on Z. Note that this formulation is very similar to a concatena-
tion of the two set of input tokens followed by an appropriate masking of the
attention matrix.

Comparison with feedforward layers

Consider a simplified variant of the cross-attention operation in (E.11.1), in
which we parameterize explicitly the keys and values matrices:1

NeuralMemory(X) = softmax
�XWqK
p

k

�

V (E.11.2)

The layer is now parameterized by a query projection matrix Wq and by the
two matrices K and V. (E.11.2) is called a memory layer [SWF+15], in the
sense that rows of the key and value matrices are used by the model to store

1See also the discussion on the perceiver network in Section 11.2.1.
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MHA

MLP

Causal MHA

Cross MHA

MLP

[BOS]

Input sequence

Encoder block
(n times)

Encoder output

Output sequence

Decoder block
(m times)

Predicted next
output token

Figure F.11.2: Encoder-decoder architecture, adapted from [VSP+17]. Padded tokens
in the decoder are greyed out.

interesting patterns to be retrieved dynamically by an attention-like operation.
If we further simplify the layer by setting Wq = I, ignoring the normalization byp

k, and replacing the softmax with a generic activation function φ, we obtain
a two-layer MLP:

MLP(X) = φ (XK)V (E.11.3)

Hence, MLPs in transformer networks can be seen as approximating an atten-
tion operation over trainable keys and values. Visualizing the closest prefixes
in the training data shows human-understandable patterns [GSBL20].

11.1.3 The complete encoder-decoder transformer

With these two components in hand, we are ready to discuss the original trans-
former model, shown in Figure F.11.2. First, the input sequence X is processed
by a standard transformer model (called the encoder), providing an updated
embedding sequence H. Next, the output sequence is predicted autoregres-
sively by another transformer model (called the decoder). Differently from
the encoder, the decoder has three components for each block:

1. A masked variant of the MHA layer (to ensure autoregression is possible).

2. A cross-attention layer where the queries are given by the input sequence
embedding H.
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def self_attention(Q: Float[Array, "n k"],
K: Float[Array, "n k"],
V: Float[Array, "n v"]

) -> Float[Array, "n v"]:
return nn.softmax(Q @ K.T) @ V

Box C.11.1: Simple implementation of the SA layer, explicitly parameterized in terms
of the query, key, and value matrices.

3. A standard token-wise MLP.

Decoder-only models are also possible, in which case the second block of the
decoder is removed and only masked MHA and MLPs are used. Most modern
LLMs are built by decoder-only models trained to autoregressively generate
text tokens [RWC+19], as discussed below. In fact, encoder-decoder models
have become less common with the realization that many seq2seq tasks can be
solved directly by decoder-only models by concatenating the input sequence
to the generated output sequence, as described in Section 8.4.3.

11.2 Computational considerations

11.2.1 Time complexity and linear-time transformers

The MHA performance does not come without a cost: since every token must
attend to all other tokens, its complexity is higher than a simpler convolutional
operation. To understand this, we look at its complexity from two points of
view: memory and time. We use a naive implementation of the SA layer for
reference, shown in Box C.11.1.

Let us look first at the time complexity. The operation inside the softmax scales
as O (n2k) because it needs to compute n2 dot products (one for each pair of
tokens). Compare this to a 1D convolutive layer, which scales only linearly in
the sequence length. Theoretically, this quadratic growth in complexity can be
problematic for very large sequences, which are common in, e.g., LLMs.

This has led to the development of several strategies for speeding up autore-
gressive generation (e.g., speculative decoding [LKM23]), as long as linear or
sub-quadratic variants of transformers. As an example, we can replace the SA
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layer with a cross-attention layer having a trainable set of tokens Z, where the
number of tokens can be chosen as hyper-parameter and controlled by the user.
This strategy was popularized by the Perceiver architecture [JGB+21] to dis-
till the original set of tokens into smaller latent bottlenecks. There are many
alternative strategies for designing linearized transformers: we discuss a few
variants in Section 11.3 and Chapter 13.

Importantly, an implementation such as the one in Box C.11.1 can be shown
to be heavily memory-bound on modern hardware [DFE+22], meaning that
its compute cost is dominated by memory and I/O operations. Hence, the
theoretical gains of linear-time attention variants are not correlated with actual
speedup on hardware. Combined with a possible reduction in performance,
this makes them less attractive than a strongly-optimized implementation of
MHA, such as the one described next.

11.2.2 Memory complexity and the online softmax

In terms of memory, the implementation in Box C.11.1 has also a quadratic
n2 complexity factor because the attention matrix QK⊤ is fully materialized
during computation. However, this is unnecessary and this complexity can be
drastically reduced to a linear factor by chunking the computation in blocks and
only performing the softmax normalization at the end [RS21]. To understand
this, consider a single query vector q, and suppose we split our keys and values
into two blocks, which are loaded in turn in memory:

K=
�

K1

K2

�

, V=
�

V1

V2

�

(E.11.4)

If we ignore the denominator in the softmax, we can decompose the SA oper-
ation, computing the output for each chunk in turn:

SA(q,K,V) =
1

L1 + L2
[h1 + h2] (E.11.5)

where for the two chunks i = 1,2 we have defined:
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Figure F.11.3: Official benchmark of FlashAttention and FlashAttention-2 on an
NVIDIA A100 GPU card, reproduced from https://github.com/Dao-AILab/flash-

attention.

hi = exp (Kiq)Vi (E.11.6)

Li =
∑

j

[exp (Kiq) ] j (E.11.7)

Note that the operation is not fully-decomposable unless we keep track of
the additional statistics Li (which is needed to compute the normalization
coefficients of the softmax operation). More in general, for multiple chunks
i = 1, . . . , m we will have:

SA(q,K,V) =
1

∑m
i=1 Li

�

m
∑

i=1

hi

�

(E.11.8)

Hence, we can design a simple iterative algorithm where for every block of keys
and values loaded in memory, we update and store the cumulative sum of the
numerator and denominator in (E.11.8), only performing the normalization
at the end. This trick (sometimes called online softmax), combined with an
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Figure F.11.4: To compute
masked self-attention on a new
token, most of the previous com-
putation can be reused (in gray).
This is called the KV cache.

KV Cache

IO-aware implementation and kernel fusion has led to highly memory- and
compute- efficient implementations of attention such as FlashAttention and
FlashAttention-2.2 Optimizing the operation for specific hardware can lead to
some counter-intuitive behaviours, such as increased speed for larger sequence
lengths - see Figure F.11.3.

11.2.3 The KV cache

An important implementative aspect of MHA occurs when dealing with au-
toregressive generation in decoder-only models. For each new token to be
generated, only a new row of the attention matrix and one value token must
be computed, while the rest of the attention matrix and the remaining value
tokens can be stored in memory, as shown in Figure F.11.4. This is called the
KV cache and it is a standard in most optimized implementations of MHA.

The size of the KV cache is linearly increasing in the sequence length. Once
again, you can compare this to an equivalent implementation of a causal con-
volutional layer, where memory is upper-bounded by the size of the receptive
field. Designing expressive layers with a fixed memory cost in autoregressive
generation is a motivating factor for Chapter 13.

11.2.4 Transformers for images and audio

Transformers were originally developed for text, and they soon became the
default choice for language modeling. In particular, the popular GPT-2 model
[RWC+19] (and later variants) is a decoder-only architecture which is pre-
trained by forecasting tokens in text sequences. Most open-source LLMs, such
as LLaMa [TLI+23], follow a similar architecture. By constrast, BERT [DCLT18]
is another popular family of pre-trained word embeddings based on an encoder-
only architecture trained to predict masked tokens (masked language mod-

2https://github.com/Dao-AILab/flash-attention
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Patch extraction Flattening Projection

Patch size: p x p

Embedding size: ppc Embedding size: e

Figure F.11.5: Image tokenization: the image is split into non-overlapping patches of
shape p× p (with p an hyper-parameter). Then, each patch is flattened and undergoes a
further linear projection to a user-defined embedding size e. c is the number of channels
of the input image.

eling). Differently from GPT-like models, BERT-like models cannot be used to
generate text but only to perform text embedding or as the first part of a fine-
tuned architecture. Encoder-decoder models for language modeling also exist
(e.g., the T5 family [RSR+20]), but they have become less popular.

From a high-level point of view, a transformer is composed of three compo-
nents: a tokenization / embedding step, which converts the original input
into a sequence of vectors; positional embeddings to encode information about
the ordering of the original sequence; and the transformer blocks themselves.
Hence, transformers for other types of data can be designed by defining the
appropriate tokenization procedure and positional embeddings.

Let us consider first computer vision. Tokenizing an image at the pixel level is
too expensive, because of the quadratic growth in complexity with respect to
the sequence length. The core idea of Vision Transformers (ViTs, [DBK+20]) is
to split the original input into non-overlapping patches of fixed length, which
are then flattened and projected to an embedding of pre-defined size, as shown
in Figure F.11.5.

The embedding step in Figure F.11.5 can be achieved with a convolutive layer,
having stride equal to the kernel size. Alternatively, libraries like einops3 ex-
tend the einsum operation (Section 2.1) to allow for grouping of elements into
blocks of pre-determined shape. An example is shown in Box C.11.2.

The original ViT used trainable positional embeddings along with an additional
class token to perform image classification. ViTs can also be used for image gen-

3http://einops.rocks
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from einops import rearrange
# A batch of images
xb = torch.randn((32, 3, 64, 64))

# Define the operation: differently from standard einsum,
# we can split the output in blocks using brackets
op = 'b c (h ph) (w pw) -> b (h w) (ph pw c)'

# Run the operation with a given patch size
patches = rearrange(xb, op, ph=8, pw=8)
print(patches.shape) # [Out]: (32, 64, 192)

Box C.11.2: einops can be used to decompose an image into patches with a simple
extension of the einsum syntax.

eration by predicting the patches in a row-major or column-major order. In this
case, we can train a separate module that converts each patch into a discrete set
of tokens using, e.g., a vector-quantized variational autoencoder [CZJ+22],
or we can work directly with continuous outputs [TEM23]. For image gener-
ation, however, other non-autoregressive approaches such as diffusion models
and flow matching tend to be preferred; we cover them in the next volume.

By developing proper tokenization mechanisms and positional embeddings,
transformers have also been developed for audio, in particular for speech recog-
nition. In this case, it is common to have a small 1D convolutional model (with
pooling) as the tokenization block [BZMA20, RKX+23]. For example, Wav2Vec
[BZMA20] is an encoder-only model whose output is trained with an exten-
sion of the cross-entropy loss, called connectionist temporal classification
loss [GG12], to align the output embeddings to the transcription. Because la-
beled data with precise alignments is scarce, Wav2Vec models are pre-trained
on large amounts of unlabeled audio with a variant of a masked language mod-
eling loss. By contrast, Whisper [RKX+23] is an encoder-decoder model where
the decoder is trained to autoregressively generate the transcription. This pro-
vides more flexibility to the model and reduces the need of strongly labeled
data, but at the cost of possible hallucinations in the transcription phase. Neu-
ral audio codecs can also be trained to compress audio into a sequence of
discrete tokens [DCSA22], which in turn form the basis for generative applica-
tions such as text-to-speech generation [WCW+23].
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Figure F.11.6: An exam-
ple of a bimodal trans-
former that operates on
both images and text: the
outputs of the two tokeniz-
ers are concatenated and
sent to the model.

"Describe the image"

Image
tokenization

Text 
tokenization

Autoregressive
transformer

"An illustration of Alice"

Transformers can also be defined for time-series [AST+24], graphs (covered
in the next chapter) and other types of data. The decoupling between data
and architecture is also the basis for multimodal variants, which can take as
input (or provide as output) different types of data. This is achieved by tok-
enizing each modality (image, audio, ...) with its appropriate tokenizer, and
concatenating the different tokens together into a single sequence. We show
an example for an image-text model in Figure F.11.6.

11.3 Variants of the transformer block

We close the chapter by discussing a few interesting variation on the basic
transformer block. First, several variants have been devised for very large
transformers to slightly reduce the computational time or parameter’s count.
As an example, parallel blocks [DDM+23] perform the MLP and MHA opera-
tion in parallel:

H= H+MLP(H) +MHA(H)

In this way, the initial and final linear projections in the MLP and MHA layers
can be fused for a more efficient implementation. As another example, multi-
query MHA [Sha19] shares the same key and value projection matrix for each
head, varying only the queries.

More in general, we can replace the MHA layer with a simpler (linear com-
plexity in the sequence length) operation, while keeping the overall structure
of the transformer block, i.e., alternating token and channel mixing with layer
normalization and residual connections. As an example, suppose the sequence
length is fixed (e.g., for computer vision, the number of patches can be fixed a
priori). In this case, the MHA layer can be replaced by an MLP operating on a
single input channel, corresponding to one dimension of the embedding. This
type of model is called a mixer model [THK+21] - see Figure F.11.7. Ignor-
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Figure F.11.7: Mixer block, com-
posed of alternating MLPs on the
rows and columns of the input ma-
trix.

MLP

MLP

ing the normalization operations, this can be written as alternating MLPs on
transpositions of the input matrix:

H=MLP(H) +H (E.11.9)

H=
�

MLP(H⊤) +H⊤
�⊤

(E.11.10)

Other variants of the mixer model are also possible using, e.g., 1D convolu-
tions, Fourier transforms, or pooling. In particular, in the S2-MLP [YLC+22]
model the token mixing operation is replaced by an even simpler MLP applied
on a shifted version of its input. The general class of such models has been
called MetaFormers by [YLZ+22].

Gated (multiplicative) interactions can also be used in the composition of the
block. In this case, several blocks are executed in parallel but their output is
combined via Hadamard multiplication. We can write a generic gated unit as:

f (X) = φ1(X)⊙φ2(X) (E.11.11)

where φ1 and φ2 are trainable blocks. For example, with φ1(X) = σ(XA) and
φ2(X) = XB we obtain the gated linear unit (GLU) described in Section 5.4.

As a few representative examples, the gMLP model [LDSL21] uses gated units
instead of a channel mixing block in a mixer model; the LLaMa family of mod-
els [TLI+23] uses GLU-like units instead of the standard MLP block; while the
gated attention unit (GAU) [HDLL22] uses a simpler attention-like model
having a single head for φ1 and a linear projection for φ2. These designs are
especially popular in some recent variants of recurrent models, discussed later
on in Chapter 13.
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To simplify the design even further, the multilinear operator network (MONet)
removes all activation functions to define a block which is composed only of
linear projections and element-wise multiplications [CCGC24]:

H= E(AX⊙BX+DX)

where E is similar to the output projection in the transformer block, DX acts
as a residual connection, and B is implemented via a low-rank decomposition
to reduce the number of parameters [CCGC24]. In order to introduce token
mixing, a token-shift operation is implemented in all odd-numbered blocks in
the model.
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12 | Graph models

About this chapter

In this chapter we consider graph-structured data, i.e., nodes connected
by a set of (known) relations. Graph are pervasive in the real world, rang-
ing from proteins to traffic networks, social networks, and recommender
systems. We introduce specialized layers to work on graphs, broadly cat-
egorized as either message-passing layers or graph transformers architec-
tures.

12.1 Learning on graph-based data

12.1.1 Graphs and features on graphs

Up to now we have considered data which is either completely unstructured
(tabular data represented as a vector) or structured in simple ways, including
sets, sequences, and grids such as images. However, many types of data are
defined by more sophisticated dependencies between its constituents. For ex-
ample, molecules are composed by atoms which are only sparsely connected
via chemical bonds. Networks of many kinds (social networks, transportation
networks, energy networks) are composed of millions of units (people, prod-
ucts, users) which interact only through a small set of connections, e.g., roads,
feedbacks, or friendships. These are more naturally defined in the language of
graph theory. The aim of this chapter is to introduce differentiable models to
work with data defined in such a way.

In its simplest form, a graph can be described by a pair of sets G = (V ,E ),
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Image
Regular graph

Sequence
Linear graph Generic graphSet

Empty graph

Figure F.12.1: Graphs generalize many types of data: sets can be seen as empty graphs
(or graphs having only self-loops), images as regular graphs, and sequences as linear
graphs. In this chapter we look at more general graph structures.

where V = {1, . . . , n} is the set of nodes (vertices), while:

E =
¦

(i, j) | i, j ∈ N
©

Two nodes of the graph

is the set of edges present in the graph. In most datasets, the number of nodes
n and the number of edges m= |E | can vary from graph to graph.

Graph generalize many concepts we have already seen: for example, graphs
containing only self-loops of the form (i, i) represent sets of objects, while
graphs containing all possible edges (fully-connected graphs) are connected
to attention layers, as we show next. Images can be represented as a graph by
associating each pixel to a node of the graph and connecting close pixels based
on a regular grid-like structure - see Figure F.12.1.

There are many variants of this basic setup, including heterogenous
graphs (graphs with different types of nodes), directed graphs, signed
graphs, etc. Most of them can be handled by variations of the techniques
we describe next.

Connections in a graph can be equivalently represented by a matrix repre-
sentation called the adjacency matrix. This is a binary square matrix A ∼
Binary(n, n) such that:

Ai j =

¨

1 if (i, j) ∈ E
0 otherwise
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Neighbors of
node 1 

Nodes connected
by edge 2

Graph Set format Adjacency matrix Incidence matrix

Figure F.12.2: We can represent the graph connectivity in three ways: as a set E of
pairs (second column); as an (n, n) adjacency matrix (third column); or as an (n, |E |)
incidence matrix (fourth column).

In this format, a set is represented by the identity matrix A= I, a fully-connected
graph by a matrix of all ones, and an image by a Toeplitz matrix. A graph where
connections are always bidirectional (i.e., (i, j) and ( j, i) are always present as
pairs among the edges) is called undirected, and we have A⊤ = A. We will deal
with undirected graphs for simplicity, but the methods can be easily extended
to the directed case. We note that there are also alternative matrix representa-
tions, e.g., the incidence matrix B∼ Binary(n, |E |) is such that Bi j = 1 if node i
participate in edge j, and we have B1⊤ = 2 because each edge connects exactly
two nodes. See Figure F.12.2 for an example.

We will assume our graphs to have self-loops, i.e., Aii = 1. If the adjacency
matrix does not have self-loops, we can add them by re-assigning it as:

A← A+ I

12.1.2 Graph features

Graphs come with a variety of possible features describing them. For example,
atoms and bonds in a molecule can be described by categorical features de-
noting their types; roads in a transportation network can have a capacity and
a traffic flow; and two friends in a social networks can be described by how
many years that have known each other.

In general, these features can be of three types: node features associated to
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each node, edge features associated to each edge, and graph features associ-
ated to the entire graph. We will begin with the simplest case of having access
to only unstructured node features, i.e., each node i has associated a vector
xi ∼ (c). The complete graph can then be described by two matrices X∼ (n, c),
that we call the feature matrix, and the adjacency matrix A∼ (n, n).

In most cases, the ordering of the nodes is irrelevant, i.e., if we consider a per-
mutation matrix P∼ Binary(n, n) (see Section 10.2), a graph and its permuted
version are fundamentally identical, in other words:

(X,A) is the same graph as (PX,PAP⊤)

Note that the permutation matrix acts by swapping the rows in X, while it
swaps both rows and columns in the adjacency matrix. Some features can also
be extracted directly from the topology of the graph. For example, we can
associate to each node a scalar value di, called the degree, which describes
how many nodes it is connected to:

di =
∑

j

Ai j

The distribution of the degrees across the graph is an important characteristic
of the graph itself, as shown in Figure F.12.3. We can collect the degrees into
a single diagonal matrix called the degree matrix:

D=





d1 . . . 0
...

. . .
...

0 . . . dn





We can use the degree matrix to define several types of of weighted adjacency
matrices, which we denote generically as W ∼ (n, n). For example, the row-
normalized adjacency matrix is defined as:

W= D−1Ai j → Wi j =
1
di

Ai j

This is normalized in the sense that
∑

i Wi j = 1. We can also define a column-
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normalized adjacency matrix as W = AD−1. Both these matrices can be in-
terpreted as “random walks” over the graph, in the sense that, given a node
i, the corresponding row or column of the corresponding normalized adja-
cency represents a probability distribution of moving at random towards any
of its neighbours. A more general symmetrically normalized adjacency matrix
is given by:

W= D−1/2AD−1/2

This is defined by Wi j =
Ai jp
di d j

, giving a weight to each connection based on

the degree of both nodes it connects to. Both the adjacency matrix and its
weighted variants have the property that Ai j = 0 whenever (i, j) /∈ E . In signal
processing terms, these are called graph-shift matrices.

Sparsity in matrices

Consider a generic adjacency matrix for a 6-nodes graph (try drawing the
graph as an exercise):

A=















0 1 1 1 1 1
1 0 0 0 1 0
1 0 0 0 1 1
1 0 0 0 0 1
1 1 1 0 0 0
1 0 1 1 0 0















The adjacency is very sparse (many zeros). This is an important prop-
erty, because sparse matrices have customized implementations and tech-
niques for manipulating them.

12.1.3 Diffusion operations over graphs

Consider a scalar feature on each node, that we collect in a vector x∼ (n), and
the following operation over the features:

x′ =Wx
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Figure F.12.3: (a) Random graph generated by drawing each edge independently from
a Bernoulli distribution (Erdős–Rényi model). (b) These graphs show a Gaussian-like
degree distribution. (b) Random graph generated by adding nodes sequentially, and for
each of them drawing 3 connections towards existing nodes with a probability propor-
tional to their degree (preferential attachment process or Barabasi-Albert model).
(d) These graphs have a few nodes with many connections acting as hubs for the graph.

where W can be the adjacency matrix, a normalized variant, or any weighted
adjacency matrix. We can re-write this operation node-wise as:

x ′i =
∑

j∈N (i)

Wi j x j

where we have defined the 1-hop neighborhood:

N (i) = { j | (i, j) ∈ E}

If we interpret the node feature as a physical quantity, projection by the adja-
cency matrix can be seen as a “diffusion” process which replaces the quantity
at each node by a weighted average of the quantity in its neighborhood.

Another fundamental matrix in the context of graph analysis is the Laplacian
matrix:

L= DW −W

where we defined the weighted degree matrix as DW
ii =

∑

j Wi j. One step of
diffusion by the Laplacian can be written as:

Lx=
∑

(i, j)∈E

Wi j(x i − x j) (E.12.1)

We can see from here that the Laplacian is intimately linked to the idea of a
gradient over a graph, and its analysis is at the core of the field of spectral
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(a) Initial graph (b) 10 steps (c) 20 steps (d) 30 steps

Figure F.12.4: (a) A random graph with 15 nodes and a scalar feature on each node
(denoted with variable colors). (b)-(d) The result after 10, 20, and 30 steps of diffusion
with the Laplacian matrix. The features converge to a stable state.

graph theory. As an example, in (E.12.1) 1 is always an eigenvector of the
Laplacian associated to a zero eigenvalue (in particular, the smallest one). We
show an example of diffusion with the Laplacian matrix in Figure F.12.4.

12.1.4 Manifold regularization

From (E.12.1) we can also derive a quadratic form built on the Laplacian:

x⊤Lx=
∑

(i, j)∈E

Wi j(x i − x j)
2 (E.12.2)

Informally, this is a scalar value that measures how “smooth” the signal over
the graph is, i.e., how quickly it changes for pairs of nodes that are connected in
the graph. To see a simple application of this concept, consider a tabular clas-
sification dataset Sn = {(xi, yi)}. Suppose we build a graph over this dataset,
where each node is an element of the dataset, and the adjacency matrix is built
based on the distance between features:

Wi j =

¨

exp(−∥xi − x j∥2) if ∥xi − x j∥2 < τ

0 otherwise
(E.12.3)

where τ is a user-defined constant. Given a classification model f (x), we may
want to constraint its output to be similar for similar inputs, where similarity
is defined proportionally to (E.12.3). To this end, we can define the features
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of the graph as the outputs of out model:

f=





f (x1)
...

f (xn)



∼ (n)

The quadratic form (E.12.2) tells us exactly how much similar inputs vary in
terms of their predictions:

f⊤Lf=
∑

i, j

Wi j( f (xi)− f (x j))
2 (E.12.4)

The optimal model can be found by a regularized optimization problem, where
the regularizer is given by (E.12.4) :

f ∗(x) = arg min
n
∑

i=1

L(yi, f (x)) +λ f⊤Lf

where L is a generic loss function and λ is a scalar hyper-parameter: This
is called manifold regularization [BNS06] and it can be used as a generic
regularization tool to force the model to be smooth over a graph, where the
adjacency is either given or is built by the user as in (E.12.3). This is especially
helpful in a semi-supervised scenario where we have a small labeled dataset
and a large unlabeled one from the same distribution, since the regularizer
in (E.12.4) does not require labels [BNS06]. However, the prediction of the
model depends only on a single element xi, and the graph is thrown away
after training. In the next section, we will introduce more natural ways of
embedding the connectivity inside the model itself.

12.2 Graph convolutional layers

12.2.1 Properties of a graph layer

In order to design models whose predictions are conditional on the connec-
tivity, we can augment standard layers f (X) with knowledge of the adjacency
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matrix, i.e., we consider neural network layers of the form:

H= f (X,A)

where as before X ∼ (n, c) (with n the number of nodes and c the features at
each node) and H∼ (n, c′), i.e., the operation does not change the connectivity
of the graph, and it returns an updated embedding Hi ∼ (c′) for each node i
in the graph. For what follows, A can be the adjacency or any matrix with the
same sparsity pattern (a graph-shift matrix), including a weighted adjacency
matrix, the Laplacian matrix, and so on.

Since permuting the nodes in a graph should have no impact on the final pre-
dictions, the layer should not depend on the specific ordering of the nodes, i.e.,
for any permutation matrix P the output of the layer should be permutation
equivariant:

f (PX,PAP⊤) = P · f (X,A)

We can define a notion of “locality” for a graph layer, similar to the image case.
To this end, we first introduce the concept of a subgraph. Given a subset of
nodes T ∈ V from the full graph, we define the subgraph induced by T as:

GT = (XT ,AT )

where XT is a (|T |, c) matrix collecting the features of the nodes in T , and
A∼ (|T |, |T |) is the corresponding block of the full adjacency matrix.

Definition D.12.1 (Graph locality) A graph layer H = f (X,A) is local if
for every node, Hi = f (XN (i),AN (i)), where N (i) is the 1-hop neighborhood
of node i.

This is similar to considering all pixels at distance 1 in the image case, except
that (a) nodes in N (i) have no specific ordering in this case, and (b) the size
ofN (i) can vary a lot depending on i. Hence, we cannot define a convolution
like we did in the image case, as its definition requires these two properties
(think of the weight tensor in a convolutional layer).

For what follows, note that we can extend our definition of locality beyond
1-hop neighbors. For example, the 2-hop neighborhoodN 2(i) is defined as all
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nodes at distance at most 2:

N 2(i) =
⋃

j∈N (i)
N ( j)

where ∪ is the set union operator. We can extend the definition of locality to
take higher-order neighborhoods into consideration and design the equivalent
of 3× 3 filters, 5× 5 filters, and so on.

12.2.2 The graph convolutional layer

In order to define a graph layer that mimicks the convolutional layer, we need it
to be permutation equivariant (instead of translational equivariant) and local.
The MHA layer is naturally permutation equivariant, but it is not local and it
does not depend explicitly on the adjacency matrix A. We will see possible
extensions to this end in the next section. For now, let us focus on a simpler
fully-connected layer:

f (X, _) = φ(XW+ b)

where W∼ (c′, c) and b∼ (c′). This is also naturally permutation equivariant,
but it does not depend on the connectivity of the graph, which is ignored. To
build an appropriate differentiable layer, we can alternate the layer’s operation
with a diffusion step.

Definition D.12.2 (Graph convolution) Given a graph represented by a node
feature matrix X∼ (n, c) and a generic graph-shift matrix A∼ (n, n) (the ad-
jacency, the Laplacian, ...), a graph convolutional (GC) layer is given by
[KW16]:

f (X,A) = φ(A(XW+ b))

where the trainable parameters are W∼ (c′, c) and b∼ (c′), with e an hyper-
parameter. φ is a standard activation function, such as a ReLU.

Note the similarity with a standard convolutional layer: we are performing a
“channel mixing” operation via the matrix W, and a “node mixing” operation
via the matrix A, the difference being that the former is untrainable in this
case (due to, once again, variable degrees between nodes and the need to
make the layer permutation equivariant). The analogy can also be justified
more formally by leveraging concepts from graph signal processing, which is
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beyond the scope of this book [BBL+17]. Ignoring the bias, we can rewrite this
for a single node i as:

Hi = φ

 

∑

j∈N (i)

Ai jX jW

!

Hence, we first perform a simultaneous update of all node embeddings (given
by the right multiplication by W). Then, each node computes a weighted av-
erage of the updated node embeddings from itself and its neighbors. Since the
number of neighbors can vary from node to node, working with the normalized
variants of the adjacency matrix can help significantly in training. It is trivial
to show permutation equivariance for the layer:

f (PX,PAP⊤) = φ
�

PAP⊤PXW
�

= P · f (X,A)

12.2.3 Building a graph convolutional network

A single GC layer is local, but the stack of multiple layers is not. For example,
consider a two-layered GC model:

f (X,A) = φ(A φ (AXW1) W2) (E.12.5)

First GC layer

with two trainable weight matrices W1 and W2. Similarly to the image case,
we can define a notion of receptive field.

Definition D.12.3 (Graph receptive field) Given a generic graph neural net-
work H = f (X,A), the receptive field of node i is the smallest set of nodes
V (i) ∈ V such that Hi = f (XV (i),AV (i)).

For a single GC layer, the receptive field is V (i) = N (i). For a two-layer net-
work as in (E.12.5), we need to consider neighbors of neighbors, and the re-
ceptive field becomes V (i) =N 2(i). In general, for a stack of k layers we will
have a receptive field of V (i) =N k(i). The smallest number of steps which is
needed to move from any two nodes in the graph is called the diameter of the
graph. The diameter defines the smallest number of layers which is required
to achieve a global receptive field for all the nodes.
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Polynomial GC layers

Alternatively, we can increase the receptive field of a single GC layer. For
example, we can make the layer local with respect to N 2(i), instead of
N (i), by considering the square of the adjacency matrix:

H= φ
�

A2XW
�

This is called a polynomial GC layer. Larger receptive fields can be ob-
tained with higher powers. More complex layers can be designed by con-
sidering ratios of polynomials [BGLA21].

We can combine GC layers with standard normalization layers, residual con-
nections, dropout, or any other operation that is permutation equivariant. Dif-
ferently from the image case, pooling is harder because there is no immediate
way to subsample a graph connectivity. Pooling layers can still be defined by
leveraging tools from graph theory or adding additional trainable components,
but they are less common [GZBA22].

Denote by H = f (X,A) a generic combination of layers providing an updated
embedding for each node (without modifying the connectivity). In analogy
with CNNs, we call it the backbone network. We can complete the design of
a generic graph convolutional network (GCN) by adding a small head of top
of these representations:

y = (g ◦ f )(X,A)

The design of the head depends on the task we are trying to solve. The most
common tasks fall into one of three basic categories: node-level tasks (e.g.,
node classification), edge-level task (e.g., edge classification), or graph-level
tasks (e.g., graph classification). We briefly consider an example for each of
them in turn, see Figure F.12.5.

Node classification

First, suppose the input graph describes some kind of social network, where
each user is associated to a node. For a given subset of users, T ⊆ V , we know
a label yi, i ∈ T (e.g., whether the user if a real user, a bot, or another kind
of automated profile). We are interested in predicting the label for all other
nodes. In this case, we can obtain a node-wise prediction by processing each
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GCN
Backbone

Node head

Edge head

Graph headAverage

Node
prediction

Edge
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Graph
prediction

Figure F.12.5: Different types of graph heads: (a) node tasks need to process the fea-
tures of a single node; (b) edge tasks require heads that are conditioned on two nodes
simultaneously; (c) graph tasks can be achieved by pooling all node representations into
a fixed-dimensional vector.

updated node embedding, e.g.:

ŷi = g(Hi) = softmax(MLP(Hi))

Running this operation over the entire matrix H gives us a prediction for all
nodes, but we only know the true labels for a small subset. We can train the
GCN by discarding the nodes outside of the training set:

argmin
1
|T |

∑

i∈T

CE( ŷi, yi)

where CE is the cross-entropy loss. Importantly, even if we are discarding the
output predictions for nodes outside our training set, their input features are
still involved in the training process due to the diffusion steps inside the GCN.
The rest of the nodes can then be classified by running the GCN a final time
after training. This scenario, where only a subset of the training data is labeled,
is called a semi-supervised problem.

Edge classification

As a second example, suppose we have a label for a subset of edges, i.e., TE ⊆ E .
As an example, our graph could be a traffic network, of which we know the
traffic flow only on a subset of roads. In this case, we can obtain an edge-
wise prediction by adding an head that depends on the features of the two
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connected nodes, e.g., by concatenating them:

ŷi j = g(Hi,H j) =MLP
��

Hi ∥ H j

��

For binary classification (e.g., predicting the affinity of two users with a scalar
value between 0 and 1) we can simplify this by considering the dot product
between the two features:

ŷe = σ(H
⊤
i H j)

Like before, we can train the network by minimizing a loss on the known edges.

Graph classification

Finally, suppose we are interested in classifying (or regressing) the entire graph.
As an example, the graph could be a molecule of which we want to predict
some chemical property, such as reactivity against a given compound. We can
achieve this by pooling the node representations (e.g., via a sum), and process-
ing the resulting fixed-dimensional embedding:

y =MLP

�

1
n

n
∑

i=1

Hi

�

The final pooling layer makes the network invariant to the permutation of the
nodes. In this case, our dataset will be composed of multiple graphs (e.g.,
several molecules), making it similar to a standard image classification task.
For node and edge tasks, instead, some datasets may be composed of a single
graph (e.g., a large social network), while other datasets can have more than a
single graph (e.g., several unconnected road networks from different towns).
This opens up the question of how to efficiently build mini-batches of graphs.

12.2.4 On the implementation of graph neural networks

As we mentioned, the peculiarity of working with graphs is that several ma-
trices involved in our computations can be very sparse. For example, consider
the following adjacency matrix:

A=





0 0 1
0 0 0
1 0 0




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Figure F.12.6: Two graphs in a mini-
batch can be seen as a single graph with
two disconnected components. In order
to distinguish them, we need to introduce
an additional vector containing the map-
ping between nodes and graph IDs.

1

3

2

4

5
6

7

This corresponds to a three-node graph with a single bidirectional edge be-
tween nodes 1 and 3. We can store this more efficiently by only storing the
indices of the non-zero values, e.g., in code:

A = [[0,2], [2,0]]

This is called a coordinate list format. For very sparse matrices, specialized
formats like this one can reduce storage but also significantly improve the run-
time of operating on sparse matrices or on combinations of sparse and dense
matrices. As an example, pytorch-sparse1 supports highly-efficient implemen-
tations of transposition and several types of matrix multiplications in PyTorch.
This is also reflected on the layers’ implementation. The forward pass of the
layers in PyTorch Geometric2 (one of the most common libraries for working
with graph neural networks in PyTorch) is parameterized by providing as in-
puts the features of the graph and the connectivity as a list of edge coordinates.

Working with sparse matrices has another interesting consequence in terms of
mini-batches. Suppose we have b graphs (Xi,Ai)bi=1. For each graph we have
the same number of node features c but a different number of nodes ni, so
that Xi ∼ (ni, c) and Ai ∼ Binary(ni, ni). In order to build a mini-batch, we can
create two rank-3 tensors:

X ∼ (b, n, c) (E.12.6)

A∼ Binary(b, n, n) (E.12.7)

where n=max(n1, . . . , nb), and both matrices are padded with zeros to fill up

1https://github.com/rusty1s/pytorch_sparse
2https://pytorch-geometric.readthedocs.io/en/latest/get_started/

introduction.html#learning-methods-on-graphs
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the two tensors. However, a more elegant alternative can be obtained by noting
that in a GC layer, two nodes that are not connected by any path (a sequence of
edges) will never communicate. Hence, we can build a single graph describing
the entire mini-batch by simply merging all the nodes:

X=





X1
...

Xb



 (E.12.8)

A=





A1 . . . 0
...

. . .
...

0 . . . Ab



 (E.12.9)

where X∼ (
∑

i ni, c) and A∼ Binary(
∑

i ni,
∑

i ni). The adjacency matrix of the
mini-batch has a block-diagonal structure, where all elements outside the di-
agonal blocks are zero (nodes from different graphs are not connected). While
seemingly wasteful, this actually increases the sparsity ratio of the graph, mak-
ing better use of the sparse matrix operations. Hence, for graph datasets in
many cases there is no real difference between working with a single graph or
a mini-batch of graphs.

In order to keep track which node belongs to each input graph, we can augment
the representation with an additional vector b ∼ (

∑

i ni) such that bi is an
index in [1, . . . , b] identifying one of the b input graphs - see Figure F.12.6. For
graph classification, we can exploit b to perform pooling separately on groups
of nodes corresponding to different graphs. Suppose H ∼ (n, c′) is the output
of the GCN backbone, then:

scatter_sum (H,b) = Y∼ (b, c′) (E.12.10)

is called a scattered sum operation and is such that the Yi is the sum of all
rows of H such that b j = i, as shown in Figure F.12.7. Similar operations can be
defined for other types of pooling operations, such as averages and maximums.

As a separate problem, sometimes we may have a single graph that does not
fit into memory: in this case, mini-batches should be formed by sampling sub-
graphs from the original graph [HYL17]. This is a relatively complex task that
goes beyond the scope of this introduction.
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Sum

Sum

Figure F.12.7: Example of scattered sum on the graph of Figure F.12.6. In this example
nodes (1,2,3,4) belong to graph 1, and nodes (5,6,7) to graph 2. After pooling, we obtain
a pooled representation for each of the two graphs.

12.3 Beyond graph convolutive layers

With the GC layer as template, we now overview a few extensions, either in
terms of adaptivity or graph features that can be handled. We close by dis-
cussing graph transformers, a different family of layers in which the graph is
embedded into a structural embedding which is summed to the node features.

12.3.1 Graph attention layers

One issue with GC layers is that the weights that are used to sum up contribu-
tions from the neighborhoods are fixed and are given by the adjacency matrix
(or a proper normalized variant). Most of the time this is equivalent to as-
suming that, apart from the relative number of connections, all neighbors are
equally important. A graph where nodes are connected mostly with similar
nodes is called homophilic: empirically, homophily is a good predictor of the
performance of graph convolutional layers [LLLG22]. Not all graphs are ho-
mophilic: for example, in a dating network, most people will be connected
with people from the opposite sex. Hence, in these scenarios we need tech-
niques that can properly adapt the weights given from each node to another
node adaptively.

For sufficiently small graphs, we can let the non-zero elements of the weight
matrix A adapt from their starting value through gradient descent. However,
the number of trainable parameters in this case increases quadratically with
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the number of nodes, and this solution does not apply to a scenario with more
than a single graph. If we assume that an edge depends only on the features of
the two nodes it connects, we can generalize the GC layer with an attention-like
operator:

Hi = φ

 

∑

j∈N (i)

softmax(α(Xi,X j))X jW

!

where α is some generic MLP block having two inputs and a scalar output, and
the softmax is applied, for each node, to the set of outputs of α with respect to
N (i), to normalize the weights irrespective of the size of the neighborhood.
Due to the similarity to the attention layer, these are called graph attention
(GAT) layers [VCC+17]. Seen from the perspective of the entire graph, this is
very similar to a MHA layer, where the attention operation is restricted only on
nodes having an edge that connects them.

The choice of α is relatively free. Instead of a dot product, the original GAT
formulation considered an MLP applied on a concatenation of features:

α(xi,x j) = LeakyReLU(a⊤
�

Vxi ∥ Vx j

�

)

where V and a are trainable. This was later found to be restrictive, in the
sense that the ordering between elements does not depend on the central node
[BAY21]. A less restrictive variant, called GATv2 [BAY21] is obtained as:

α(xi,x j) = a⊤LeakyReLU(V
�

xi ∥ x j

�

)

Both GAT and GATv2 are very popular baselines nowadays.

12.3.2 Message-passing neural networks

Suppose we have available additional edge features ei j, e.g., in a molecular
dataset we may know a one-hot encoded representation of the type of each
molecular bond. We can generalize the GAT layer to include these features by
properly modifying the attention function:

α(xi,x j) = a⊤LeakyReLU(V
�

xi ∥ x j ∥ ei j

�

)

We can further generalize all the layers seen up to now (GC, GAT, GATv2, GAT
with edge features) by abstracting away their basic components. Consider a
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very general layer formulation:

hi =ψ
�

xi, Aggr
�

�

M(xi,x j,ei j)
	

N (i)

��

(E.12.11)

where:

1. M builds a feature vector (which we call a message) relative to the edge
between node i and node j. Contrary to GC and GAT layers, we are not
restricting the message to be scalar-valued.

2. Aggr is a generic permutation invariant function (e.g., a sum) to aggre-
gate the messages from all nodes connected to node i.

3. ψ is a final block that combines the aggregated message with the node
features xi.

As an example, in a GC layer the message is built as M(_,x j, _) = Ai jW
⊤x j, the

aggregation is a simple sum, and ψ(_,x) = φ(x). The general layer (E.12.11)
was introduced in [GSR+17] with the name of message-passing layer, and it
has become a very popular way to categorize (and generalize) layers operating
on graphs [Vel22].

Let us consider a few examples of using this message-passing framework. First,
we may want to give more highlight to the central node in the message-passing
phase. We can do this by modifying the ψ function:

ψ(x,m) = φ(Vx+m)

where V is a generically trainable matrix (this was introduced in [MRF+19] and
popularized in PyTorch Geometric as the GraphConv3 layer). Second, suppose
nodes have available more complex features such as a time series per node
(e.g., a distributed set of sensors). Note that in the message-passing frame-
work, node-wise operations are decoupled from the way messages are aggre-
gated and processed. Denoting by x i the time-series at node i, we can gen-
eralize the GC layer by simply modifying the message function with a layer

3https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_

geometric.nn.conv.GraphConv.html
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working on time series, e.g., a Conv1d layer:

hi =
∑

j∈N (i)

Ai jConv1d(x i)

This is an example of a spatio-temporal GC layer [YYZ17]. Furthermore, up
to now we have assumed that only node features should be updated. However,
it is easy to also update edge features by an additional edge update layer:

ei j ←MLP(ei j,hi,h j)

This can also be seen as a message-passing iteration, in which the edge ag-
gregates messages from its neighbors (the two connected nodes). This line of
reasoning allows to further generalize these layers to consider more extended
neighborhoods and graph features [BHB+18].

This is a very brief overview that provides a gist of many possible message-
passing variants. There are many topics we are not able to cover in detail
due to space: among these, we single out building MP layers for higher-order
graphs (in which edges connect more that a pair of nodes) [CPPM21] and MP
layers for point cloud data, in which we are interested in satisfying additional
symmetries (rotational and translational symmetries) [SHW21, EHB23].

12.3.3 Graph transformers

We have seen two techniques to employ the graph structure: one is to add a
regularization term that forces the network’s outputs to be smooth relative to
the graph; the second is to constrain the operations of the graph to follow the
graph connectivity. In particular, in the GAT layer we have used a standard at-
tention operation by properly masking the pairwise comparisons. However, we
have also seen in the previous chapter that transformers have become popular
because they provide an architecture that is completely agnostic from the type
of data. Can we design the equivalent of a graph transformer [MGMR23]?

Recall that the two basic steps for building a transformer are tokenization of
the input data and definition of the positional embedding. Tokenization for a
graph is simple: for example, we can consider each node as a token, or (if edge
features are given) each node and each edge as separate tokens after embed-
ding them in a shared space. Let us ignore for now edge features. Consider
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Figure F.12.8: General idea
of a graph transformer: the
connectivity is embedded into
a set of positional embeddings,
which are added to the collected
features. The result is then
processed by a standard trans-
former network.

Positional
embeddings

Transformer

the generic architecture taking as input the node features:

H= Transformer(X)

This is permutation equivariant but completely agnostic to the connectivity.
We can partially solve this by augmenting the node features with some graph-
based features, such as the degree of the node, or the shortest path distance
to some pre-selected nodes (anchors) [RGD+22, MGMR23]. More in general,
however, we can consider an embedding of the graph connectivity into what
we call a structural embedding:

H= Transformer(X+ Embedding(A))

Each row of Embedding(A) provides a vectorial embedding of the connectivity
of the graph relative to a single node, ignoring all features (see Figure F.12.8).
Luckily, embedding the structure of a graph into a vector space is a broad field.
As an example, we describe here a common embedding procedure based on
random walks [DLL+21]. Recall that the following matrix:

R= AD−1

can be interpreted as a “random walk”, in which Ri j is the probability of moving
from node i to node j. We can iterate the random walk multiple times, for a
fixed k set a priori by the user:

R,R2, . . . ,Rk

Random walk embeddings are built by collecting all the walk probabilities of
a node returning on itself, and projecting them to a fixed-dimensional embed-
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ding:

Embedding(A) =









diag(R)
diag(R2)

...
diag(Rk)









W

Under specific conditions on the graph structure, this can be shown to provide
a unique representation for each node [DLL+21]. Alternative types of embed-
dings can be obtained by considering eigen-decompositions of the Laplacian
matrix [LRZ+22]. For a fuller exposition of graph transformers, we refer to
[MGMR23].
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About this chapter

Transformer models are very effective at processing sequences, but they
are hindered by their quadratic complexity in the sequence length. One
possibility is to replace them with recurrent layers, having only constant-
time for processing each element of a sequence, irrespective of its length.
In this final chapter we provide an overview of several recurrent models
and their characteristics. The field has been moving very rapidly in the last
two years, and we provide a wide overview at the expense of precision.

13.1 Linearized attention models

13.1.1 Replacing the dot product

To provide some intuition on why recurrent neural networks (RNNs) can be
useful, we begin with a generalization of the attention layer (called the lin-
earized attention layer [KVPF20]) that can be written in a recurrent form.
We start by rewriting the SA layer in an abstract form with a generic scalar-
valued attention function α(·, ·) instead of the dot product:

hi =

∑n
j=1α

�

qi,k j

�

v j
∑n

j=1α
�

qi,k j

� (E.13.1)

where for the standard SA, α(x,y) = exp(x⊤y). If the elements of the sequence
must be processed in order (as in autoregressive generation), (E.13.1) is in-
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convenient because its cost grows quadratically in the sequence length.If a KV
cache is used, memory still grows linearly. By comparison, a convolutive layer
has fixed time and memory cost for each element to be processed, but infor-
mation is lost if a token is outside the receptive field. What we would like,
instead, is a mechanism to compress all the information of the sequence into a
fixed-size input (which we will call a memory or state tensor), so that the cost
of running the model on our current input token plus the memory is constant.
We will call such models recurrent.

To begin, note that any non-negativeα is a valid similarity function. In machine
learning, this requirement is equivalent to α being what is called a kernel
function [HSS08]. Many such kernel functions can be written as a generalized
dot product:

α(x,y) = φ(x)⊤φ(y) (E.13.2)

for some function φ : Rc → Re that performs a feature expansion.

Kernel functions

As an example, the polynomial kernel function α(x,y) = (1+x⊤y)d can
be rewritten as (2) if φ(·) explicitly computes all polynomials of its input
up to order d [HSS08]. Some kernel functions correspond to infinite-
dimensional expansions (e.g., the Gaussian kernel), in which case (2) can
still be recovered in terms of an approximated kernel expansion, such as
working with random Fourier features [SW17].

Based on (E.13.2) we can rewrite (E.13.1) as:

hi =

∑n
j=1φ(qi)⊤φ(k j)v⊤j
∑n

j=1φ(qi)⊤φ(k j)

where we have added a transpose operation on v j to be consistent with the
dimensions. Because φ(qi) does not depend on j we can bring it outside the
sum to obtain:

hi =
φ(qi)⊤

∑n
j=1φ(k j)v⊤j

φ(qi)⊤
∑n

j=1φ(k j)
(E.13.3)

This is called a linearized attention model [KVPF20]. Computing (E.13.3)
for all tokens has complexity O (n(e2 + ev)), which is linear in the sequence
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length and advantageous whenever n < e2. φ can be chosen freely, e.g., in
[KVPF20] they consider a quadratic feature expansion or even a simplerφ(x) =
ELU(x) + 1 for short sequences.

13.1.2 A recurrent formulation

Let us now consider what happens for a causal variant of the linearized atten-
tion layer. First, we modify (E.13.3) by constraining the sum only on past input
elements to make it causal:

hi =
φ(qi)⊤

∑i
j=1φ(k j)v⊤j

φ(qi)⊤
∑i

j=1φ(k j)
(E.13.4)

Attention memory Si

Normalizer memory zi

This is our first example of a recurrent layer. To understand this, we note that
the attention and normalizer memories can be written recursively as:

Si = Si−1 +φ(ki)v
⊤
i (E.13.5)

zi = zi−1 +φ(ki) (E.13.6)

where the base case of the recurrence is given by their initialization:

S0 = 0 (E.13.7)

z0 = 0 (E.13.8)

The output is then given by:

hi =
φ(qi)⊤Si

φ(qi)⊤zi
(E.13.9)

Equations (E.13.5)-(E.13.9) are particularly interesting for an autoregressive
scenario: for any new token to be generated, we update the two memory states
(equations (E.13.5) and (E.13.6)), and we use these updated states to compute
the output for the i-th element. Importantly, the total computation all steps is
constant, and the cost in memory is also fixed since the previous memories
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Figure F.13.1: Overview of a recur-
rent layer: past tokens are shown in
gray, current input token in blue, the
memory state in yellow.

R
ecurrence
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Previous token

Current token

Memory (state)

Si−1 and zi−1 can be discarded. We can alternate between the two formula-
tions of the layer: we can use a vectorized variant for training (for efficient
implementation on GPUs) and the recurrent formulation for inference.

13.2 Classical recurrent layers

13.2.1 General formulation

Let us now abstract away the key components of a recurrent layer, using the
previous section as reference. First, we need a state of fixed size, which is used
to compress all useful information up to the i-th element of the sequence. We
denote it generically as si, and without lack of generality we assume it is a sin-
gle vector from now on. Second, we need a transition function (recurrence)
that updates the state vector based on the previous value and the value of the
current token, which we denote as f (si−1,xi). Third, we need what we call a
readout function that provides an output for the i-th element of the sequence.
We denote it as g(si,xi). See also Figure F.13.1 for a visualization.

Definition D.13.1 (Recurrent layer) Given a sequence of tokens x1,x2, . . .,
a generic recurrent layer can be written as:

si = f (si−1,xi) (E.13.10)

hi = g(si,xi) (E.13.11)

where the state vector si ∼ (e) is initialized as zero by convention, s0 = 0.
The size of the state vector, e, and the size of the output vector hi ∼ (o) are
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hyper-parameters. We call f the state transition function and g the readout
function.

In this format, a recurrent layer represents a discrete-time, input-driven dy-
namical system, and it is a causal layer by definition. In control engineering,
this is also known as a state-space model. For tasks in which causality is
unnecessary, bidirectional layers [SP97] can also be defined. In a bidirec-
tional layer we initialize two recurrent layers (with separate parameters), one
of which processes the sequence left-to-right, and the second one right-to-left.
Their output states are then concatenated to provide the final output.

Recurrent neural networks (RNNs) can be built by stacking multiple recurrent
layers on the updated sequence h1,h2, . . . ,hn [PGCB13]. Interestingly, a recur-
rent layer has no requirement on the length of the sequence, which can (in
principle) be unbounded. For this reason, RNNs with unbounded precision or
growing architectures can be shown to be Turing-complete [CS21].

Implicit layers

What happens if we apply a recurrent layers to a single token x?

si = f (si−1,x) (E.13.12)

If we run the state transition several time starting from a known initializa-
tion s0, this is similar to a model with several layers (one per transition)
sharing the same parameters. Suppose we run (E.13.12) an infinite num-
ber of times. If the dynamic system has a stable attractor, the output will
be defined by the fixed-point equation:

s= f (s,x) (E.13.13)

If we take (E.13.13) as the definition of a layer, we obtain what is called
an implicit layer [BKK19]. The implementation of implicit layers can
be made feasible by using fast solvers for the fixed-point equation and
computing the backward pass with the use of the implicit function theo-
rem [BKK19]. Implicit graph layers can also be defined by running each
diffusion operation to a stable state [GMS05, SGT+08].
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13.2.2 “Vanilla” recurrent layers

Historically, recurrent layers were instantiated by considering two fully-connected
layers as transition and readout functions:

f (si−1,xi) = φ(Asi−1 +Bxi) (E.13.14)

g(si,xi) = Csi +Dxi (E.13.15)

where as always we ignore biases for simplicity, and we have four trainable
matrices A ∼ (e, e), B ∼ (e, c), C ∼ (o, e), and D ∼ (o, c), where c is the input
dimensionality (the size of each token). A layer in this form is sometimes
referred to generically as a “recurrent layer”, a “vanilla recurrent layer”, or an
Elman recurrent layer. When the two matrices A and B are left untrained
and we only have a single layer, these models are called echo state networks
(ESNs) or reservoir computers [LJ09]. ESNs can be a powerful baseline for
time series forecasting, especially when the untrained matrices (the reservoir)
are initialized in a proper way [GBGB21].

Despite their historical significance, layers of this form are extremely ineffi-
cient (and hard) to train. To see this, note that by its design the computation
across elements of the sequence cannot be parallelized efficiently, as shown
in Box C.13.1. Hence, we need to resort to iterative (for-loops) implemen-
tations, and even highly customized CUDA implementations1 are slower than
most alternative sequence layers.

Another issue stems from the gradients involved in the layer’s computations.
Consider a simplified case having only the transition function. We can unroll
the full computation as:

s1 = f (s0,x1)
s2 = f (s1,x2)

...

sn = f (sn−1,xn)

This is similar to a model with n layers, except that the parameters are shared
(the same) across the layers. Below we focus on the quantity ∂Asn (the weight

1https://docs.nvidia.com/deeplearning/performance/dl-performance-

recurrent/index.html
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# Input tensor
x = torch.randn(batch_size, sequence_length, features)

# State tensor
s = torch.zeros(batch_size, state_size)

# State update
state_update = nn.RNNCell(features, state_size)
for i in range(x.shape[1]):

s = state_update(x[:, i, :], s)

Box C.13.1: Vanilla recurrence in PyTorch. It is impossible to parallelize the for-loop
with linear algebra because of the dependencies in the recurrence. In PyTorch, the state
update is called a recurrent cell, while the recurrent layers, such as torch.nn.RNN,
wrap a cell and perform the complete for-loop.

Jacobian with respect to A), but similar considerations apply to all gradients.
Let us define the following cumulative product:

esi =
n
∏

j=i+1

∂s j−1
f (s j−1,x j) (E.13.16)

This represents the gradient of the transition function from the end of the se-
quence backwards to element i, as shown in Figure F.13.2. Because of weight
sharing, the gradient we are looking for has a separate term for each element
in the sequence which involves these cumulative products:

∂Asn = ∂A f (sn−1,xn) +
n−1
∑

i=1

esi

�

∂A f (si−1,xi)
�

(E.13.17)

Gradient from element n Gradient from element i

The first term corresponds to a “standard” weight Jacobian, describing the in-
fluence of A on the last element of the sequence. The terms in the summation
are the additional contributions, one for each element of the sequence, which
are weighted by the chained input Jacobian computed over the sequence itself.

Written in this form, reverse mode automatic differentiation is also called back-
propagation through time (BPTT), and it can be a strong source of instability
or gradient problems during gradient descent. To see this, note that each in-
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Figure F.13.2: Backward pass for
a recurrent layer: the adjoint values
have to be propagated through all the
transition steps. Each state then con-
tributes a single term to the full gra-
dient of the parameters.
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R
ecurrence

R
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Readout

put Jacobian in the inner product in (E.13.17) involves a multiplication by
the derivative of the activation function φ. Some of the earliest analyses of
vanishing and exploding gradients were done in this context [Hoc98]. Layer
normalization was also originally developed to stabilize training in RNNs, by
computing statistics over the states’ sequence [BKH16].

Several techniques have been developed to partially solve these instabilities
in the context of recurrent layers. For example, the sum in (E.13.17) can be
truncated to a given interval (truncated BPTT), or the gradients can be thresh-
olded if they exceed a pre-defined upper bound (clipped gradients).

13.2.3 Gated recurrent networks

Over the years, several variants of the vanilla layer were proposed to improve
its performance. In this section we focus on a popular class of such models,
called gated RNNs. One issue of RNNs is that the entire state gets overwritten
at each transition, which is reflected in the partial products in (E.13.17). How-
ever, we can assume that, for many sequences, only a few elements of these
transitions are important: as an example, in an audio signal, empty regions or
regions with no information are typical. In these cases, we may be interested
in sparsifying the transition (similarly to how most attention weights tend to
be close to zero) and, consequently, setting most elements in esi to 1. This can
be achieved with the addition of specialized gating layers.

We consider the simplest form of gated RNN, called light gated recurrent unit
(Li-GRU, [RBOB18]), having a single gate. For our purposes, a gating function
is simply a layer that outputs values in the range [0,1] that can be used to
“mask” the input. As an example, a gate over the state can be obtained by a
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fully-connected layer with a sigmoid activation function:

γ(si−1,xi) = σ (Vsi−1 +Uxi)

where V and U have similar shapes to A and B. We can interpret this as follows:
if γi ≈ 0, the i-th feature of the state should be kept untouched, while if γ1 ≈ 1,
we should propagate its updated value as output. Hence, we can rewrite the
transition function by properly masking the new and old values as:

f (si−1,xi) =

New values
︷ ︸︸ ︷

γ(si−1,xi)⊙ (Asi−1 +Bxi)+(1− γ(si−1,xi))⊙ si−1
︸ ︷︷ ︸

Old values

This can be seen as a soft (differentiable) approximation to a “real” gate having
only binary values, or as a convex combination of the original layer and a skip
connection. We can theoretically control the goodness of this approximation
by adding an additional regularizer to the loss that constrains the outputs of
the gate to lie as close as possible to 0 or 1.

Other gated recurrent layers can be obtained by adding additional gates to this
design: the original gated recurrent unit (GRU) adds a so-called “reset gate”
to the layer [CVMG+14], while long-short term memory units (LSTMs) have a
third “forget gate” [HS97]. LSTMs were the first gated variant to be introduced
in the literature, and for a long time they have been the most successful deep
architecture for processing sequences [Sch15].

13.3 Structured state space models

13.3.1 Linear recurrent layers

We now consider a simplified class of recurrent layers, in which we remove the
intermediate nonlinearity in the transition function:

f (si−1,xi) = Asi−1 +Bxi (E.13.18)

g(si,xi) = Csi +Dxi (E.13.19)
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Written in this form, (E.13.18)-(E.13.19) are called state space models (SSM).2

Intuitively, an SSM layer is “less expressive” than a standard recurrent layer
(because of the lack of non-linearities). However, this can be recovered by
adding activation functions after the output, or by interleaving these layers
with token-wise MLPs [ODG+23].

Interest in this class of models (re)-started in 2020, when [GDE+20] analyzed
a theoretical construction for the matrix A in (E.13.18) that could efficiently
compress one-dimensional input sequences according to some pre-defined re-
construction criterion. The result was called the HiPPO (High-Order Poly-
nomial Projection Operator) matrix. A family of neural networks built by a
stack of SSM layers based on the HiPPO theory soon followed, leading to the
Structured State Space for Sequence Modeling (S4) layer in 2021 [GGR21]
and the simplified S4 model (S5) in 2022 [SWL22].

Because of their roots in HiPPO theory, the proposed SSM layers up to S4 con-
sidered a stack of 1D models, one for each channel of the input, with transition
matrices initialized as HiPPO matrices. By contrast, S5 introduced a standard
multi-input, multi-output model of the form in (E.13.18)-(E.13.19), which is
the one we describe here. In particular, we focus our analysis on a simplified
variant known as the linear recurrent unit (LRU) [OSG+23].

This formulation has a number of interesting properties, mostly stemming from
the associativity of the linear transition function. To see this, we start by noting
that the recurrence has a closed form solution:

si =
i
∑

j=1

Ai− jBx j (E.13.20)

We can view this summation from two different points of view. First, we can
aggregate all coefficients with respect to the input sequence into a rank-3 ten-
sor:

K = stack
�

An−1B,An−2B, . . . ,AB,B
�

We can compute all outputs via a single 1D convolution of filter size equal to

2Confusingly, any recurrent layer in the form (E.13.10)-(E.13.11) is an SSM, but in the
neural network’s literature the term SSM has come to be associated only with the linear variant.
Sometimes we refer to them as structured SSMs because, as we will see, we need to properly
constrain the transition matrix to make them effective.
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the length of the sequence (a long convolution) between the input sequence
stacked into a single matrix X∼ (n, c) and the pre-computed kernel K:

S= Conv1D(X, K)

Hence, the SSM layer can be interpreted as a convolution [GJG+21]. If the tran-
sition matrix is applied on a single channel, this can be exploited to speed-up
computations by operating in a frequency domain, e.g., in the FlashConv im-
plementation.3 However, a more efficient solution can be found by exploiting
a family of algorithms known as associative (parallel) scans (or all-prefix-
sums).

13.3.2 An interlude: associative scans

We introduce parallel scans in their general formulation before seeing their
application to linear SSMs. Consider a sequence of elements (x1, x2, . . . , xn),
and an operation ⋆ which is assumed binary (it acts on any two elements of
the sequence) and associative. We want to compute all partial applications of
this operator to the sequence (using separate colors for readability):

x1, x1 ⋆ x2, x1 ⋆ x2 ⋆ x3, . . . , x1 ⋆ x2 ⋆ · · · ⋆ xn

This can be done trivially by an iterative algorithm which computes the ele-
ments one-by-one, adding one element at every iteration (this corresponds to
how a standard recurrent layer would be computed). However, we can devise
an efficient parallel algorithm by exploiting the associativity of the operator ⋆
[Ble90]. The key intuition is that multiple pairs of elements can be computed
in parallel and then aggregated recursively.

As a simple example, consider a sequence of 6 elements x1, x2, x3, x4, x5, x6 (an
in-depth example applied to SSMs can be found in [SWL22]). We will denote
by x̂ i the i-th prefix we want to compute. The overall procedure is shown
schematically in Figure F.13.3. We first aggregate pairs of adjacent values as:

s1 = x1 ⋆ x2→ x̂2

s2 = x3 ⋆ x4

s3 = x5 ⋆ x6

3https://www.together.ai/blog/h3
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Figure F.13.3: Parallel scan on a se-
quence of six elements: circles of the same
color can be computed in parallel; dashed
circles are the outputs of the parallel scan.

where we use arrows to denote output values of the algorithm. We now per-
form a second level of aggregations:

s1 ⋆ x3→ x̂3

o1 = s1 ⋆ s2→ x̂4

And finally:

o1 ⋆ x5→ x̂5

o1 ⋆ s3→ x̂6

While this looks strange (we made 7 steps instead of 5), the three blocks
of computations can be trivially parallelized if we have access to 3 separate
threads. In general, by organizing the set of computations in a balanced fash-
ion, we are able to compute the parallel scan in O (T log n), where T is the cost
of the binary operator ⋆. An example of implementation is the associative scan
function in JAX.4

It is easy to show that the transition function in a linear SSM is an example of
an all-prefix-sums problem. We define the elements of our sequence as pairs
x i = (A,Bxi), and the binary operator as:

(Z,z) ⋆ (V,v) = (VZ,Vz+ v)

The prefixes of ⋆ are then given by [SWL22]:

x1 ⋆ x2 ⋆ . . . ⋆ x i = (A
i, si)

4https://jax.readthedocs.io/en/latest/_autosummary/jax.lax.associative_

scan.html
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Hence, running a parallel scan will gives us the powers of A as the first elements
of the output sequence, and all the states of the layer as the second element
of the output sequence. The complexity of this operation is upper bounded by
the complexity of Ai−1A, which scales as O (n3). To make the entire procedure
viable, we can constrain A so that its powers can be computed more efficiently.
This is the topic of the next section.

13.3.3 Diagonal SSMs

A common strategy to make the previous ideas feasible is to work with diago-
nal transition matrices (or diagonal matrices plus a low-rank term [GGR21]).
In this case, powers of A can be computed easily by taking powers of the diag-
onal entries in linear time. In addition, as we will see, working with diagonal
matrices allows us to control the dynamics of the transition function to avoid
numerical instabilities.

In particular, a square matrix A is said to be diagonalizable if we can find
another square (invertible) matrix P and a diagonal matrix Λ such that:

A= PΛP−1 (E.13.21)

Diagonalizable matrices are (in a sense) “simpler” that generic matrices, For
example, if such a decomposition exists, it is easy to show that powers can also
be computed efficiently as:

Ai = PΛiP−1

Suppose that the transition matrix is diagonalizable. Then, we can re-write the
SSM in an equivalent form having a diagonal transition matrix. We begin by
substituting (E.13.21) into the definition of the SSM and multiplying on both
sides by P−1:

P−1si =
i
∑

j=1

Λi− j PB x j

New state vector s̄i New input-state matrix B̄

We now rewrite the readout function in terms of the new variable s̄:

yi = CP s̄i +Dxi

New readout matrix C̄
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Putting everything together:

s̄i = Λs̄i−1 + B̄xi (E.13.22)

yi = C̄s̄i +Dxi (E.13.23)

Hence, whenever a diagonalization of A exists, we can always rewrite the SSM
into an equivalent form having a diagonal transition matrix. In this case, we
can directly train the four matrices Λ = diag(λ),λ ∼ (e), B̄ ∼ (e, c), C̄ ∼ (o, e)
and D∼ (o, c), with the diagonal matrix being parameterized by a single vector
of dimension e.

Not all matrices can be diagonalized. However, an approximate diagonaliza-
tion can always be found if one allows for matrices P and Λ to have complex-
valued entries [OSG+23]. Care must be taken to parameterize the values over
the diagonal so that the eigenvalues of the transition matrix stay < 1 in abso-
lute value, to avoid diverging dynamics. We refer to [OSG+23] for a description
of both points and for a complete analysis of the resulting LRU layer.

13.4 Additional variants

Balancing the different strengths of convolutions, recurrence, and attention is
an active research topic. To close the book, we list some recurrent layers (or
layers that can be interpreted as recurrent) that have been introduced very
recently in the literature.

13.4.1 Attention-free transformers

One issue of the linearized transformer model (Section 13.1.1) is the quadratic
complexity in the feature dimension e. The attention-free transformer (ATF)
was introduced as a variant of the basic attention layer that is instead linear in
both sequence length and in the number of features [ZTS+21].

The core idea is to replace the dot product interactions between keys, query,
and values with a simpler multiplicative interaction (element-wise):

hi = σ(qi)⊙

∑

j exp
�

k j

�

⊙ v j
∑

j exp
�

k j

� (E.13.24)
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This is similar to the self-attention layer, except that we replace all dot prod-
ucts with element-wise (Hadamard) multiplications. It is also inspired by the
linearized attention layer in that the query is only used as a global modula-
tion factor, in this case after normalizing it with a sigmoid operation. In fact,
we can recover a standard attention formulation by rewriting (E.13.24) for
a single dimension z (exploiting the fact that we only perform element-wise
operations):

hiz =
σ(qiz)

∑

j exp(k jz)
∑

j exp(k jz)
v jz

Hence, the ATF layer can be re-interpreted as a channel-wise variant of atten-
tion, in the sense that for every channel we can rewrite it as an attention oper-
ation over the elements of the sequence. To increase flexibility, [ZTS+21] also
considered adding relative embeddings W∼ (m, m) (where m is the maximum
allowed length of the sequences):

hi = σ(qi)⊙

∑

j exp
�

k j +Wi j

�

⊙ v j
∑

j exp
�

k j +Wi j

� (E.13.25)

The relative embeddings can also be trained via a low-rank factorization to re-
duce the number of parameters. See [ZTS+21] for this and for additional vari-
ants of the basic ATF layer (e.g., hybridizing it with convolutional operations).
We can also convert (E.13.24) to a causal (recurrent) variant by properly re-
stricting the summation.

13.4.2 The Receptance Weighted Key Value (RWKV) model

The RWKV model [PAA+23] extends the ATF layer by incorporating a few addi-
tional architectural modifications. At the time of writing, this is one of the only
pre-trained RNNs matching transformers at the largest scale, so we describe it
in more detail. First, the relative embeddings are simplified by considering a
single vector w∼ (e) which is scaled for each offset:

wi j = −(i − j)w

In addition, experiments showed that having a separate offset u (in place of
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w) for the current element is beneficial. Written in causal form, this gives:

hi =Wo

�

σ(qi)⊙

∑i−1
j=1 exp

�

k j +wi j

�

⊙ v j+exp (ki + u)⊙ vi
∑i−1

j=1 exp
�

k j +wi j

�

+exp (ki + u)

�

(E.13.26)

where we highlight the differences from the basic ATF layer in red. The query
is called the receptance in [PAA+23], and an additional output projection Wo

is added at the end. Second, the RWKV model modifies the standard MLP in
the transformer block with a differently gated token-wise block. For a given
input token x this can be written as:

y= σ(W1x)⊙W2 max(0,W3x)2 (E.13.27)

where W1, W2, and W3 are trainable parameters. This is a standard MLP except
for the left-most gate and the use of the squared ReLU. As a final modification,
all three projections in the first block (and also the two appearances of x in
(E.13.26)) are replaced with convex combinations of xi and xi−1 to improve
performance, which is called token shift.

13.4.3 Selective state space models

We have seen three classes of recurrent models: standard recurrent layers (and
their gated versions), linearized attention layers, and structured state space
models. Although they look different, it is relatively easy to move from one
class of models to the other. To see this, let us consider a linearized attention
layer where we ignore the denominator:

Si = Si−1 +φ(ki)v
⊤
i (E.13.28)

hi = φ(qi)
⊤Si (E.13.29)

Apart from the matrix-valued state, we see this has the form of a SSM layer,
except that some matrices (e.g., C= φ(qi)⊤) are not fixed but they depend on
the specific input token. From the point of view of dynamic systems, we say
that standard SSMs describe time-invariant systems, while (E.13.28)-(E.13.29)
describe a time-varying system. This has inspired another class of SSM lay-
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Figure F.13.4: Mamba block (residual
connections around the block and nor-
malization are not shown). σ is the sig-
moid function. Adapted from [GD23].

Linear

Convolution

Mamba SSM

Linear

Linear

ers whose matrices are not constrained to be time-invariant, which have been
called selective SSMs. Most of these models leverage the idea of attention
layers of projecting the input multiple times before the layer’s computations.

As an example, we focus here on the so-called Mamba layer [GD23] which,
at the time of writing, is one of the few SSM layers that was scaled to match
the performance of transformer models at very large contexts and parameters’
counts. First, in order to make the SSM layer time-varying, a subset of its
matrices are made input-dependent:5

si = A(xi)si−1 + B(xi)xi (E.13.30)

hi = C(xi)si +Dxi (E.13.31)

where A(·), B(·), and C()̇ are linear projections of their input tokens. To make
this feasible, the layer is applied to each channel of the input independently,
and the transition matrix is selected as diagonal, so that all matrices of the
SSM can be represented with a single vector of values. This layer looses the
easy parallel scan implementation and requires a customized hardware-aware
implementation [GD23]. It can be shown that the Mamba SSM variant and sev-

5The matrix D can be seen as a simple residual connection and it is left untouched. The
original layer has a slightly different parameterization where A= exp(∆Ā), for some trainable
Ā and input-dependent scalar value ∆. This does not change our discussion.
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eral other SSM layers are degenerate case of a gated recurrent layer [GJG+21,
GD23].

To make the overall architecture simpler, Mamba avoids alternating MLPs and
SSMs, in favour of a gated archicture (similar to the gated attention unit from
Section 11.3) where an MLP is used to weight the outputs from the SSM. An
additional depthwise convolution is added for improved flexibility - see Figure
F.13.4.
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Goodbye (for now)

And so, Alice’s first trip in this differentiable wonderland has come (for now)
to an end. We only made a very broad tour, with a focus on the many ways
layers can be designed and composed to create modern neural networks.

There are many topics we discussed
only briefly, including how we can use
these models in practice: from fine-
tuning to generative modeling, explain-
ability, and more. We also skimmed
on many engineering aspects: train-
ing and serving large models is a
huge engineering feat which requires,
among other things, distributed train-
ing strategies, fast compilers, and De-
vOps techniques. And the emergence
of LLMs has opened up new avenues for
their use where knowledge of their inner workings is not even a prerequisite,
from prompt engineering to model chaining and agentic behaviours.

This book has a companion website,6 where I hope to publish additional chap-
ters that touch upon some of these topics. If time allows, some of them may
be joined together in a new volume.

I hope you appreciated the journey! For comments, suggestions, and feedback
on the book do not hesitate to contact me.

6https://sscardapane.it/alice-book
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A | Probability theory

About this chapter

Machine learning deals with a wide array of uncertainties (such as in
the data collection phase), making the use of probability fundamental.
We review here - informally - basic concepts associated with probability
distributions and probability densities that are helpful in the main text.
This appendix introduces many concepts, but many of them should be
familiar. For a more in-depth exposition of probability in the context of
machine learning and neural networks, see [Bis06, BB24].

A.1 Basic laws of probability

Consider a simple lottery, where you can buy tickets with 3 possible outcomes:
“no win”, “small win”, and “large win”. For any 10 tickets, 1 of them will
have a large win, 3 will have a small win, and 6 will have no win. We can
represent this with a probability distribution describing the relative frequency
of the three events (we assume an unlimited supply of tickets):

p(w= ‘no win’) = 6/10

p(w= ‘small win’) = 2/10

p(w= ‘large win’) = 1/10

Equivalently, we can associate an integer value w= {1, 2,3} to the three events,
and write p(w= 1) = 6/10, p(w= 2) = 2/10, and p(w= 3) = 1/10. We call w
a random variable. In the following we always write p(w) in place of p(w= i)
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244 Basic laws of probability

for readability when possible. The elements of the probability distribution must
be positive and they must sum to one:

p(w)≥ 0,
∑

w

p(w) = 1

The space of all such vectors is called the probability simplex.

Remember that we use p ∼∆(n) to denote a vector of size n belonging
to the probability simplex.

Suppose we introduce a second random variable r, a binary variable describing
whether the ticket is real (1) or fake (2). The fake tickets are more profitable
but less probable overall, as summarized in Table T.A.1.

Table T.A.1: Relative frequency of winning at an hypothetical lottery, in which tickets
can be either real or fake, shown for a set of 100 tickets.

r = 1 (real ticket) r = 2 (fake ticket)

w= 1 (no win) 48 2
w= 2 (small win) 16 3
w= 3 (large win) 8 15

Sum 80 20

We can use the numbers in the table to describe a joint probability distribu-
tion, describing the probability of two random variables taking a certain value
jointly:

p(r = 2, w= 3) = 15/100

Alternatively, we can define a conditional probability distribution, e.g., an-
swering the question “what is the probability of a certain even given that another
event has occurred?”:

p(r = 1 | w= 3) =
p(r = 1, w= 3)

p(w= 3)

This is called the product rule of probability. As before, we can make the
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notation less verbose by using the random variable in-place of its value, i.e.:

p(r, w) = p(r | w)p(w) (E.A.1)

If p(r | w) = p(r), i.e., p(r, w) = p(r)p(w), we say that the two variables are
independent. We can use conditional probabilities to marginalize over one
random variable:

p(w) =
∑

r

p(w, r)p(r) (E.A.2)

This is called the sum rule of probability. The product and sum rules are the
basic axioms that define the algebra of probabilities. By combining them we
obtain the fundamental Bayes’s rule:

p(r | w) =
p(w | r)p(r)

p(w)
=

p(w | r)p(r)
∑

r ′ p(w | r ′)p(r ′)
(E.A.3)

Bayes’s rule allows us to “reverse” conditional distributions, e.g., computing
the probability that a winning ticket is real or fake, by knowing the relative
proportions of winning tickets in both categories (try it).

A.2 Real-valued probability distributions

In the real-valued case, defining p(x) is more tricky, because x can take in-
finitely possible values, each of which has probability 0 by definition. How-
ever, we can work around this by defining a probability cumulative density
function (CDF):

P(x) =

∫ x

0

p(t)d t

and defining the probability density function p(x) as its derivative. We ignore
most of the subtleties associated with working with probability densities, which
are best tackled in the context of measure theory [BR07]. We only note that
the product and sum rules continue to be valid in this case by suitably replacing
sums with integrals:
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p(x , y) = p(x | y)p(y) (E.A.4)

p(x) =

∫

y

p(x | y)p(y)d y (E.A.5)

Note that probability densities are not constrained to be less than one.

A.3 Common probability distributions

The previous random variables are example of categorical probability dis-
tributions, describing the situation in which a variable can take one out of k
possible values. We can write this down compactly by defining as p ∼ ∆(k)
the vector of probabilities, and by x ∼ Binary(k) a one-hot encoding of the
observed class:

p(x) = Cat(x;p) =
∏

i

px i
i

We use a semicolon to differentiate the input of the distribution from its pa-
rameters. If k = 2, we can equivalently rewrite the distribution with a single
scalar value p. The resulting distribution is called a Bernoulli distribution:

p(x) = Bern(x; p) = px(1− p)(1−x)

In the continuous case, we will deal repeatedly with the Gaussian distribution,
denoted byN (x;µ,σ2), describing a bell-shaped probability centered inµ (the
mean) and with a spread of σ2 (the variance):

p(x) =N (x;µ,σ2) =
1

p
2πσ2

exp
�

−
1
2

� x −µ
σ

�2�

In the simplest case of mean zero and unitary variance, µ = 0, σ2 = 1, this
is also called the normal distribution. For a vector x ∼ (k), a multivariate
variant of the Gaussian distribution is obtained by considering a mean vector
µ∼ (k) and a covariance matrix Σ∼ (k, k):

p(x) =N (x;µ,Σ) = (2π)−k/2 det(Σ)−1/2 exp
�

(x−µ)⊤Σ−1(x−µ)
�
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Two interesting cases are Gaussian distributions with a diagonal covariance
matrix, and the even simpler isotropic Gaussian having a diagonal covariance
with all entries identical:

Σ= σ2I

The first can be visualized as an axis-aligned ellipsoid, the isotropic one as an
axis-aligned sphere.

A.4 Moments and expected values

In many cases we need to summarize a probability distribution with one or
more values. Sometimes a finite number of values are enough: for example,
having access to p for a categorical distribution or to µ and σ2 for a Gaus-
sian distribution completely describe the distribution itself. These are called
sufficient statistics.

More in general, for any given function f (x) we can define its expected value
as:

Ep(x) [ f (x)] =
∑

x

f (x)p(x) (E.A.6)

In the real-valued case, we obtain the same definition by replacing the sum with
an integral. Of particular interest, when f (x) = x p we have the moments (of
order p) of the distribution, with p = 1 called the mean of the distribution:

Ep(x) [x] =
∑

x

x p(x)

We may want to estimate some expected values despite not having access to
the underlying probability distribution. If we have access to a way of sampling
elements from p(x), we can apply the so-called Monte Carlo estimation:

Ep(x) [ f (x)]≈
1
n

∑

x i∼p(x)

f (x i) (E.A.7)

where n controls the quality of the estimation and we use x i ∼ p(x) to denote
the sampling operation. For the first-order moment, this reverts to the very
familiar notation for computing the mean of a quantity from several measure-
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ments:
Ep(x) [x] =

1
n

∑

x i∼p(x)

x i

A.5 Distance between probability distributions

At times we may also require some form of distance between probability dis-
tributions, in order to evaluate how close two distributions are. The Kullback-
Leibler (KL) divergence between p(x) and q(x) is a common choice:

KL(p ∥ q) =

∫

p(x) log
p(x)
q(x)

d x

The KL divergence is not a proper metric (it is asymmetric and does not respect
the triangle inequality). It is lower bounded at 0, but it is not upper bounded.
The divergence can only be defined if for any x such that q(x) = 0, then p(x) =
0 (i.e., the support of p is a subset of the support of q). The minimum of 0 is
achieved whenever the two distributions are identical. The KL divergence can
be written as an expected value, hence it can be estimated via Monte Carlo
sampling as in (E.A.7).

A.6 Maximum likelihood estimation

Monte Carlo sampling shows that we can estimate quantities of interest con-
cerning a probability distribution if we have access to samples from it. How-
ever, we may be interested in estimating the probability distribution itself.
Suppose we have a guess about its functional form f (x; s), where s are the
sufficient statistics (e.g., mean and variance of a Gaussian distribution), and
a set of n samples x i ∼ p(x). We call these samples identical (because they
come from the same probability distribution) and independently distributed,
in short, i.i.d. Because of independence, their joint distribution factorizes for
any choice of s:

p(x1, . . . , xn) =
n
∏

i=1

f (x i; s)
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Large products are inconvenient computationally, but we can equivalently rewrite
this as a sum through a logarithmic transformation:

L(s) =
n
∑

i=1

log( f (x i; s))

Finding the parameters s that maximize the previous quantity is called the
maximum likelihood (ML) approach. Because of its importance, we reframe
it briefly below.

Definition D.A.1 (Maximum likelihood) Given a parametric family of prob-
ability distributions f (x; s), and a set of n values {x i}

n
i=1 which are i.i.d. sam-

ples from an unknown distribution p(x), the best approximation to p(x) ac-
cording to the maximum likelihood (ML) principle is:

s∗ = arg max
s

n
∑

i=1

log( f (x i; s))

If f is differentiable, we can maximize the objective through gradient descent.
This is the core approach we follow for training differentiable models.

To close this appendix, we showcase instead some simpler examples of ML
estimation for the case of standard probability distributions. We do not provide
worked out calculations, for which we refer to [Bis06, BB24].

Maximum likelihood for the Bernoulli distribution

Consider first the case of a Bernoulli distribution with unknown parameter p.
In this case, the ML estimator is:

p∗ =

∑

i x i

n

which is simply the ratio of positive samples over the entire dataset.
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Maximum likelihood for the Gaussian distribution

For the Gaussian distribution, we can rewrite its log likelihood as:

L(µ,σ2) = −
n
2

log(2πσ2)−
1

2σ2

n
∑

i=1

(x i −µ)2

Maximizing for µ and σ2 separately returns the known rules for computing the
empirical mean and variance of a Gaussian distribution:

µ∗ =
1
n

∑

i

x i (E.A.8)

σ2∗ =
1
n

∑

i

(x i −µ∗)2 (E.A.9)

The two can be computed sequentially. Because we are using an estimate for
the mean inside the variance’s formula, it can be shown the resulting estimation
is slightly biased. This can be corrected by modifying the normalization term to

1
n−1 ; this is known as Bessel’s correction.1 For large n, the difference between
the two variants is minimal.

1https://en.wikipedia.org/wiki/Bessel%27s_correction
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B | Universal approximation in 1D

About this chapter

While formally proving the universal approximation theorem is beyond
the scope of this book, it is helpful to get an intuitive feeling for how such
proofs can be constructed. In this appendix we follow and extend the
visual intuitions from a 2019 online book chapter by M. Nielsen,a to which
we refer for an extended discussion (and some interactive visualizations),
especially for the case of multi-dimensional inputs.

ahttp://neuralnetworksanddeeplearning.com/chap4.html

We focus on the original approximation theorem by Cybenko [Cyb89] which
considers models having one hidden layer with sigmoid activation functions.
We also restrict the analysis to functions with a single input and a single output,
that can be visualized easily. The reasoning can be extended to other activation
functions and to higher dimensions.

The outline of this visual proof is relatively simple:

1. As a first step, we show how to manually set the weights of a model with
a single neuron in the hidden layer to approximate a step function.

2. Then, we proceed to show how adding another unit in the hidden layer
allows to approximate any function which is constant over a small in-
terval, and zero everywhere else (we call these interval functions “bin”
functions).

3. Finally, we describe a simple procedure to approximate a generic func-
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252 Approximating a step function

Figure F.B.1: A network with a single
neuron in the hidden layer can be visual-
ized as a sigmoid with controllable slope,
center, and amplitude. We show here an
example where we fix the amplitude and
the center, but we vary the slope.

s

x

a

a
σ

(w
(x
−
s)

)

w=0.1 w=1 w=5

tion by first binning it to the desired accuracy, and then adding as many
neurons as needed to approximate all bins in turn. For m bins we ob-
tain a network with 2m neurons. For a generic function with multiple
inputs, this number would grow exponentially in the number of dimen-
sions, making the proof non constructive in a practical case.

B.1 Approximating a step function

To begin, let us consider a single neuron in the hidden layer, in which case we
can write the network’s equation as (ignoring the output bias term, as it is not
helpful in our derivation):

f (x) = aσ(wx + s)

For the purposes of visualization, it is helpful to rewrite this by adding a minus
sign on the bias, and factoring the multiplication term on the entire input of σ
(the two variants are clearly equivalent):

f (x) = a σ( w (x − s )) (E.B.1)

Amplitude Slope Shift

This is similar to the “tunable” variant of sigmoid we introduced in Section
5.4. In particular, in this formulation a controls the amplitude of the sigmoid,
w controls the slope, and s shifts the function by a fixed amount.

We show in Figure F.B.1 several plots of (E.B.1), where we fix a and s while
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(a) 1 neuron
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(b) 2 neurons
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(c) 4 neurons

Figure F.B.2: (a) A neural network with one input, one hidden neuron, and one output
can approximate any step function (here shown with a = 1 and s = 0.3). (b) With
two hidden neurons and one output we can approximate any function which is constant
over a small interval. (c) With four neurons, we can approximate any function which is
piecewise constant over two non-zero intervals. Note that bins can be negative by defining
a negative amplitude.

varying w. As can be seen, by increasing w the slope gets steeper. Fixing it to a
very large constant (say, w= 104), we are left with a very good approximation
to a step function, of which we can control the location of the step (the s
parameter) and the amplitude (the a parameter), as shown in Figure F.B.2a.

B.2 Approximating a constant function

If we add a second neuron with opposite amplitude (and slightly shifted posi-
tion), we can approximate a function which is constant over a small interval
(we call it a “bin” function). Defining a width ∆ we can write:

f (x) = aσ

�

w

�

x − s−
∆

2

��

− aσ

�

w

�

x − s+
∆

2

��

(E.B.2)

Go up [down] at s− ∆2 Go down [up] at s+ ∆2

where we recall that w is now a large constant, e.g., 104. (E.B.2) describes a
function (equivalent to a model with one hidden layer having two neurons)
which increases by a at s− ∆2 , is constant with value f (x) = a over the interval
�

s− ∆2 , s+ ∆2
�

, and then decreases to 0 afterwards. An example is shown in
Figure F.B.2b.
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254 Approximating a piecewise constant function

For the following, we can rewrite the previous function as fa,s,∆(x) to highlight
the dependence on the three parameters a, s, and ∆.

B.3 Approximating a piecewise constant function

Because fa,s,∆(x) is effectively 0 outside the corresponding interval, two func-
tions defined over non-intersecting intervals will not influence each other, i.e.,
the “bin” function we just defined is highly localized. Hence, by adding two ad-
ditional neurons in the hidden layer we can define a function which is constant
over two separate intervals (an example of which is shown in Figure F.B.2c):

f (x) = f (x; a1, s2,∆1) + f (x; a2, s2,∆2)

The rest of the proof is now trivial and proceeds by binning the function we
want to approximate in many small intervals. Given any (continuous) function
g(x) over an interval (which we assume [0, 1] for simplicity), we first bin the
input domain into m equispaced intervals, where m controls the accuracy of
the approximation (the higher m, the better the approximation). Hence, the
i-th bin spans the interval:

Bi =
�

i
m
−
∆

2
,

i
m
+
∆

2

�

where ∆ is the size of each bin. For each bin, we compute the average value
of g(x) inside the interval itself:

gi =
1
∆

∫

x∈Bi

g(x)d x

Finally, we define a network with 2m neurons in the hidden layer, two for each
bin. Each bin function is centered in the bin and takes value gi:

f (x) =
m
∑

i=1

f

�

x; gi ,
i
m

,∆

�

(E.B.3)

The i-th bin is centered in i
m

(Approximated) constant value
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(a) 5 bins
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(b) 15 bins
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(c) 50 bins

Figure F.B.3: Approximating g(x) = sin(x)
x in [0,10] with (a) m = 5, (b) m = 15,

and (c) m = 50 bins. The original function is in red, the approximation (E.B.3) in
green. The MSE in the three cases decreases exponentially (approximately 0.02, 0.002,
and 0.00016).

We show in Figure F.B.3 an example of such approximation in the case of
g(x) = sin(x)

x for increasing number of bins (m = 5, m = 15, m = 50). It
should be clear that the MSE is inversely proportional to m, and we can de-
crease the error as much as desired by simply increasing the resolution of the
approximation.

Similar reasonings can be applied to multi-dimensional inputs and different
activation functions.1

1http://neuralnetworksanddeeplearning.com/chap4.html
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